IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5488-d1423916.html
   My bibliography  Save this article

The Food, Energy, and Water Nexus through the Lens of Electric Vehicle Adoption and Ethanol Consumption in the United States

Author

Listed:
  • Jacqueline Amaya

    (Environmental Biology Program, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Emily Bednarski

    (Sustainability Program, Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Allison Guccione

    (Sustainability Program, Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Zachary Raniszeski

    (Sustainability Program, Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Megan Tierney

    (Environmental Biology Program, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Samantha Trajcevski

    (Sustainability Program, Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Isabella Waite

    (Sustainability Program, Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    These authors contributed equally to this work.)

  • Robert J. Brecha

    (Sustainability Program, Hanley Sustainability Institute, University of Dayton, Dayton, OH 45469, USA
    Renewable and Clean Energy Program, University of Dayton, Dayton, OH 45469, USA)

Abstract

The US produces a large share of global biofuels but is unique in using a relatively inefficient biofuel pathway involving corn (maize) for ethanol production. The Renewable Fuel Standards that enshrine this feedstock were intended as a greenhouse gas emissions reduction measure but have had the effect of coupling the food, energy, and, to a lesser extent, water systems. This paper looks at the food–energy–water (FEW) nexus as exemplified by the growth in corn agriculture for internal combustion engine vehicle fuel and how that will likely change as vehicle electrification proceeds and accelerates. Starting with scenarios in which there is a rapid uptake in electric vehicles by 2030 and beyond, we examine the implications for the switch from liquid fuels for transportation in the United States toward electric vehicles (EVs). We find that scenarios in which EV penetration grows rapidly will clearly decrease demand for corn ethanol. Our analysis shows that, with judicious planning, the decrease in corn ethanol demand can have potential positive co-benefits. These co-benefits include reducing stressors on depleting aquifers and nutrient runoff to waterways. Substituting a small fraction of displaced industrial corn–ethanol cropland with large-scale solar photovoltaic (PV) capacity can supply a large fraction of the additional electricity needed for EVs. Finally, solar PV generation can ameliorate or even increase income and create more jobs than those lost to the decreased ethanol demand.

Suggested Citation

  • Jacqueline Amaya & Emily Bednarski & Allison Guccione & Zachary Raniszeski & Megan Tierney & Samantha Trajcevski & Isabella Waite & Robert J. Brecha, 2024. "The Food, Energy, and Water Nexus through the Lens of Electric Vehicle Adoption and Ethanol Consumption in the United States," Sustainability, MDPI, vol. 16(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5488-:d:1423916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. Chen, Xiaoguang & Khanna, Madhu, 2018. "Effect of corn ethanol production on Conservation Reserve Program acres in the US," Applied Energy, Elsevier, vol. 225(C), pages 124-134.
    4. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    5. Shapouri, Hosein & Duffield, James A. & Wang, Michael Q., 2002. "The Energy Balance of Corn Ethanol: An Update," Agricultural Economic Reports 34075, United States Department of Agriculture, Economic Research Service.
    6. Pereira, L.G. & Cavalett, O. & Bonomi, A. & Zhang, Y. & Warner, E. & Chum, H.L., 2019. "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 1-12.
    7. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    8. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    9. Khanna, M., 2018. "Effect of Corn Ethanol Production on Conservation Reserve Program Acres in the US," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277014, International Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin, K.G. & Jones, J.P.H. & Clark, C.M., 2022. "A review of domestic land use change attributable to U.S. biofuel policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Jennifer Ifft & Deepak Rajagopal & Ryan Weldzuis, 2019. "Ethanol Plant Location and Land Use: A Case Study of CRP and the Ethanol Mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 37-55, March.
    3. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    5. Chen, Bin & Xu, Haoran & Tan, Peng & Zhang, Yuan & Xu, Xiaoming & Cai, Weizi & Chen, Meina & Ni, Meng, 2019. "Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells," Applied Energy, Elsevier, vol. 237(C), pages 476-486.
    6. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    7. Sangha, Laljeet & Shortridge, Julie, 2023. "Quantification of unreported water use for supplemental crop irrigation in humid climates using publicly available agricultural data," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Johnson, David R. & Geldner, Nathan B. & Liu, Jing & Baldos, Uris Lantz & Hertel, Thomas, 2023. "Reducing US biofuels requirements mitigates short-term impacts of global population and income growth on agricultural environmental outcomes," Energy Policy, Elsevier, vol. 175(C).
    9. Han, Guang & Niles, Meredith T., 2023. "An adoption spectrum for sustainable agriculture practices: A new framework applied to cover crop adoption," Agricultural Systems, Elsevier, vol. 212(C).
    10. Khorchani, M. & Awada, T. & Schmer, M. & Jin, V. & Birru, G. & Dangal, S.R.S. & Suyker, A. & Freidenreich, A., 2024. "Long-term croplands water productivity in response to management and climate in the Western US Corn Belt," Agricultural Water Management, Elsevier, vol. 291(C).
    11. García, Carlos A. & Fuentes, Alfredo & Hennecke, Anna & Riegelhaupt, Enrique & Manzini, Fabio & Masera, Omar, 2011. "Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico," Applied Energy, Elsevier, vol. 88(6), pages 2088-2097, June.
    12. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2015. "Application of theory-based evaluation for the critical analysis of national biofuel policy: A case study in Malaysia," Evaluation and Program Planning, Elsevier, vol. 52(C), pages 39-49.
    13. Spawn-Lee, Seth A. & Lark, Tyler J. & Gibbs, Holly & Houghton, Richard A. & Kucharik, Christopher J & Malins, Chris & Pelton, Rylie & Robertson, G. Philip, 2021. "Refuting recent claims of an improved carbon intensity of U.S. corn ethanol," EcoEvoRxiv cxhz5, Center for Open Science.
    14. Schattman, Rachel E. & Jean, Haley & Faulkner, Joshua W. & Maden, Rebecca & McKeag, Lisa & Nelson, Katie Campbell & Grubinger, Vernon & Burnett, Stephanie & Erich, M. Susan & Ohno, Tsutomu, 2023. "Effects of irrigation scheduling approaches on soil moisture and vegetable production in the Northeastern U.S.A," Agricultural Water Management, Elsevier, vol. 287(C).
    15. Cherubini, Francesco & Bird, Neil D. & Cowie, Annette & Jungmeier, Gerfried & Schlamadinger, Bernhard & Woess-Gallasch, Susanne, 2009. "Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 434-447.
    16. Affuso, Ermanno & Hite, Diane, 2013. "A model for sustainable land use in biofuel production: An application to the state of Alabama," Energy Economics, Elsevier, vol. 37(C), pages 29-39.
    17. Le, Hoanh & Gálvez-Soriano, Oscar, 2024. "Impact Of The Renewable Fuel Standard On Midwest Farmland Values," 2024 Annual Meeting, July 28-30, New Orleans, LA 343763, Agricultural and Applied Economics Association.
    18. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    19. Winters-Michaud, Clayton P. & Haro, Alfredo & Callahan, Scott & Bigelow, Daniel P., 2024. "Major Uses of Land in the United States, 2017," Economic Information Bulletin 345316, United States Department of Agriculture, Economic Research Service.
    20. Avery W. Driscoll & Richard T. Conant & Landon T. Marston & Eunkyoung Choi & Nathaniel D. Mueller, 2024. "Greenhouse gas emissions from US irrigation pumping and implications for climate-smart irrigation policy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5488-:d:1423916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.