IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5419-d1422501.html
   My bibliography  Save this article

Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes

Author

Listed:
  • Larissa Fornitano

    (Programa de Pós-Graduação em Biodiversidade, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus São José do Rio Preto, São José do Rio Preto 15054-000, São Paulo, Brazil
    Laboratório de Ecologia de Mamíferos, Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus Jaboticabal, Jaboticabal 14884-900, São Paulo, Brazil)

  • Jéssica Abonizio Gouvea

    (Programa de Pós-Graduação em Ecologia Aplicada, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus de Piracicaba, Piracicaba 13416-000, São Paulo, Brazil)

  • Rômulo Theodoro Costa

    (Programa de Pós-Graduação em Biodiversidade, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus São José do Rio Preto, São José do Rio Preto 15054-000, São Paulo, Brazil
    Laboratório de Ecologia de Mamíferos, Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus Jaboticabal, Jaboticabal 14884-900, São Paulo, Brazil)

  • Marcelo Magioli

    (Instituto Pró-Carnívoros, Atibaia 12945-010, São Paulo, Brazil
    Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros, Instituto Chico Mendes de Conservação da Biodiversidade, Atibaia 12952-011, São Paulo, Brazil
    Laboratório de Ecologia e Conservação, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil)

  • Rita Bianchi

    (Programa de Pós-Graduação em Biodiversidade, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus São José do Rio Preto, São José do Rio Preto 15054-000, São Paulo, Brazil
    Laboratório de Ecologia de Mamíferos, Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus Jaboticabal, Jaboticabal 14884-900, São Paulo, Brazil)

Abstract

Habitat loss and fragmentation are pervasive processes driving the disappearance of populations and species in the Neotropical region. Since species loss may translate into functional loss, assessing changes in the composition of assemblages’ functional traits might improve our understanding of the ecological roles played by species and ecosystem functioning. Here, we investigate how landscape structure and composition impact the functional diversity of terrestrial mammals in 18 forest patches composing eight protected areas in Southern Brazil. We used functional diversity (FD) based on dietary, physical, and behavioral traits and species vulnerability to extinction. We determined which landscape variables (patch size, proportions of forest and sugarcane, and patch isolation) most influenced mammal FD values by using a both-direction stepwise model selection from a linear global model. Finally, we evaluated the role of trophic guilds in explaining the variation in the FD values using a Principal Component Analysis. Between 2012 and 2017, using camera traps, we recorded 26 native medium- and large-sized mammals throughout the protected areas, of which 6 are regionally threatened, and 5 domestic/exotic species. Richness among the forest patches varied from 4 to 24 species (9.05 ± 5.83), while the FD values varied from 1.29 to 6.59 (2.62 ± 1.51). FD variation was best explained by patch size, which exhibited a strong positive correlation (adjusted R 2 = 0.55, slope = 0.67, p < 0.001). Insectivores and frugivores presented the highest correlation with patch size, explaining most of the variation in the FD values. Our findings strengthen the paramount role of large protected areas in maintaining mammal diversity and their ecological functions in human-modified landscapes.

Suggested Citation

  • Larissa Fornitano & Jéssica Abonizio Gouvea & Rômulo Theodoro Costa & Marcelo Magioli & Rita Bianchi, 2024. "Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes," Sustainability, MDPI, vol. 16(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5419-:d:1422501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5419/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luke Gibson & Tien Ming Lee & Lian Pin Koh & Barry W. Brook & Toby A. Gardner & Jos Barlow & Carlos A. Peres & Corey J. A. Bradshaw & William F. Laurance & Thomas E. Lovejoy & Navjot S. Sodhi, 2011. "Primary forests are irreplaceable for sustaining tropical biodiversity," Nature, Nature, vol. 478(7369), pages 378-381, October.
    2. Forest Isbell & Vincent Calcagno & Andy Hector & John Connolly & W. Stanley Harpole & Peter B. Reich & Michael Scherer-Lorenzen & Bernhard Schmid & David Tilman & Jasper van Ruijven & Alexandra Weigel, 2011. "High plant diversity is needed to maintain ecosystem services," Nature, Nature, vol. 477(7363), pages 199-202, September.
    3. Anthony D. Barnosky & Nicholas Matzke & Susumu Tomiya & Guinevere O. U. Wogan & Brian Swartz & Tiago B. Quental & Charles Marshall & Jenny L. McGuire & Emily L. Lindsey & Kaitlin C. Maguire & Ben Mers, 2011. "Has the Earth’s sixth mass extinction already arrived?," Nature, Nature, vol. 471(7336), pages 51-57, March.
    4. Brodie, Jedediah F., 2018. "Carbon Costs and Bushmeat Benefits of Hunting in Tropical Forests," Ecological Economics, Elsevier, vol. 152(C), pages 22-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reed, James & van Vianen, Josh & Foli, Samson & Clendenning, Jessica & Yang, Kevin & MacDonald, Margaret & Petrokofsky, Gillian & Padoch, Christine & Sunderland, Terry, 2017. "Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics," Forest Policy and Economics, Elsevier, vol. 84(C), pages 62-71.
    2. Qingqian He & Qing Meng & William Flatley & Yaqian He, 2022. "Examining the Effects of Agricultural Aid on Forests in Sub-Saharan Africa: A Causal Analysis Based on Remotely Sensed Data of Sierra Leone," Land, MDPI, vol. 11(5), pages 1-20, April.
    3. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    6. Schwabe, Kurt A & Carson, Richard T & DeShazo, JR & Potts, Matthew D & Reese, Ashley N & Vincent, Jeffrey R, 2015. "Creation of Malaysia’s Royal Belum State Park: A Case Study of Conservation in a Developing Country," University of California at San Diego, Economics Working Paper Series qt9tf2j26s, Department of Economics, UC San Diego.
    7. Huang, Wei, 2019. "Forest condition change, tenure reform, and government-funded eco-environmental programs in Northeast China," Forest Policy and Economics, Elsevier, vol. 98(C), pages 67-74.
    8. Admiraal, Jeroen F. & Wossink, Ada & de Groot, Wouter T. & de Snoo, Geert R., 2013. "More than total economic value: How to combine economic valuation of biodiversity with ecological resilience," Ecological Economics, Elsevier, vol. 89(C), pages 115-122.
    9. Lei Wang & Xiaobo Huang & Jianrong Su, 2022. "Tree Species Diversity and Stand Attributes Differently Influence the Ecosystem Functions of Pinus yunnanensis Secondary Forests under the Climate Context," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    10. Guangxi Shen & Zipeng Song & Jiacong Xu & Lishuang Zou & Lijin Huang & Yingnan Li, 2023. "Are Ecosystem Services Provided by Street Trees at Parcel Level Worthy of Attention? A Case Study of a Campus in Zhenjiang, China," IJERPH, MDPI, vol. 20(1), pages 1-16, January.
    11. Coomes, Oliver T. & Cheng, Yuanyu & Takasaki, Yoshito & Abizaid, Christian, 2021. "What drives clearing of old-growth forest over secondary forests in tropical shifting cultivation systems? Evidence from the Peruvian Amazon," Ecological Economics, Elsevier, vol. 189(C).
    12. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    13. I Wayan Susi Dharmawan & Nur M. Heriyanto & Raden Garsetiasih & Rozza Tri Kwatrina & Reny Sawitri & Denny & Titiek Setyawati & Pratiwi & Budi Hadi Narendra & Chairil Anwar Siregar & Ilham Kurnia Abywi, 2024. "The Dynamics of Vegetation Structure, Composition and Carbon Stock in Peatland Ecosystem of Old Secondary Forest in Riau and South Sumatra Provinces," Land, MDPI, vol. 13(5), pages 1-22, May.
    14. Blackman, Allen, 2015. "Strict versus mixed-use protected areas: Guatemala's Maya Biosphere Reserve," Ecological Economics, Elsevier, vol. 112(C), pages 14-24.
    15. Ullah, S M Asik & Tani, Masakazu & Tsuchiya, Jun & Rahman, M.Abiar & Moriyama, Masao, 2022. "Impact of protected areas and co-management on forest cover: A case study from Teknaf Wildlife Sanctuary, Bangladesh," Land Use Policy, Elsevier, vol. 113(C).
    16. Fabrício Otávio do Nascimento Pereira & Graciliano Galdino Alves dos Santos & Anderson Borges Serra & Cleuton Lima Miranda & Guilherme da Silva Araújo & Emil José Hernández Ruz, 2023. "Composition of the Anuran Community in a Forest Management Area in Southeastern Amazonia," Land, MDPI, vol. 12(7), pages 1-13, July.
    17. Serge Mandiefe Piabuo & Peter A. Minang & Chupezi Julius Tieguhong & Divine Foundjem-Tita & Frankline Nghobuoche, 2021. "Illegal logging, governance effectiveness and carbon dioxide emission in the timber-producing countries of Congo Basin and Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14176-14196, October.
    18. Jones, Laurence & Milne, Alice & Hall, Jane & Mills, Gina & Provins, Allan & Christie, Michael, 2018. "Valuing Improvements in Biodiversity Due to Controls on Atmospheric Nitrogen Pollution," Ecological Economics, Elsevier, vol. 152(C), pages 358-366.
    19. Ulukan, Defne & Grillot, Myriam & Benoit, Marc & Bernes, Gun & Dumont, Bertrand & Magne, Marie-Angélina & Monteiro, Leonardo & Parsons, David & Veysset, Patrick & Ryschawy, Julie & Steinmetz, Lucille , 2022. "Positive deviant strategies implemented by organic multi-species livestock farms in Europe," Agricultural Systems, Elsevier, vol. 201(C).
    20. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5419-:d:1422501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.