IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1437-d1197470.html
   My bibliography  Save this article

Composition of the Anuran Community in a Forest Management Area in Southeastern Amazonia

Author

Listed:
  • Fabrício Otávio do Nascimento Pereira

    (Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira 66075-110, PA, Brazil)

  • Graciliano Galdino Alves dos Santos

    (Programa de Pós-Graduação Bionorte, Instituto de Ciências Biológicas, Belém 66077-830, PA, Brazil)

  • Anderson Borges Serra

    (Faculdade de Engenharia Florestal, Campus Universitário de Altamira, Universidade Federal do Pará, Altamira 68371-155, PA, Brazil)

  • Cleuton Lima Miranda

    (Laboratório de Genética e Evolução Animal (LEGAL), Universidade Federal do Amazonas, Manaus 69067-005, AZ, Brazil)

  • Guilherme da Silva Araújo

    (Laboratório de Zoologia, Faculdade de Ciências Biológicas, Altamira 68371-155, PA, Brazil)

  • Emil José Hernández Ruz

    (Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal do Pará, Altamira 66075-110, PA, Brazil
    Laboratório de Zoologia, Faculdade de Ciências Biológicas, Altamira 68371-155, PA, Brazil)

Abstract

Forest management strategies often compromised the patterns and processes of the naturally dynamic forest ecosystems. As species occurrence and diversity are directly associated with ecological and environment factors, this study evaluated the effect of low-impact forest management on the structure of the anuran community, considering the effects of the environment types generated by the management and the post-exploitation time in the Fazenda Uberlândia, southeastern Amazonia (Portel, Pará, Brazil). Field data were collected in the period of the highest rainfall in the region (February to March 2021) by sampling 84 linear transects (25 m each) at a minimum distance of 500 m between them. The time elapsed since logging that took place in the study sites varied from 2 to 17 years. We analyzed an area without forest management (used as a control) and three environment types formed by logging activities: secondary roads, skid trails, and storage yard. Our results showed no differences in species richness, abundance, and composition of the anuran community with respect to time since exploitation. Meanwhile, we found significant differences across different environment types, suggesting that the observed pattern of richness and abundance may benefit the assembly of anurans in the short term. Still, over a longer period, it may have a homogenizing effect, gradually modifying the anurofauna assemblage in managed areas to favor species adapted to more open environments, resulting in damage to the local diversity of anurans.

Suggested Citation

  • Fabrício Otávio do Nascimento Pereira & Graciliano Galdino Alves dos Santos & Anderson Borges Serra & Cleuton Lima Miranda & Guilherme da Silva Araújo & Emil José Hernández Ruz, 2023. "Composition of the Anuran Community in a Forest Management Area in Southeastern Amazonia," Land, MDPI, vol. 12(7), pages 1-13, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1437-:d:1197470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luke Gibson & Tien Ming Lee & Lian Pin Koh & Barry W. Brook & Toby A. Gardner & Jos Barlow & Carlos A. Peres & Corey J. A. Bradshaw & William F. Laurance & Thomas E. Lovejoy & Navjot S. Sodhi, 2011. "Primary forests are irreplaceable for sustaining tropical biodiversity," Nature, Nature, vol. 478(7369), pages 378-381, October.
    2. Sean L. Maxwell & Richard A. Fuller & Thomas M. Brooks & James E. M. Watson, 2016. "Biodiversity: The ravages of guns, nets and bulldozers," Nature, Nature, vol. 536(7615), pages 143-145, August.
    3. David I. Warton, 2011. "Regularized Sandwich Estimators for Analysis of High-Dimensional Data Using Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 67(1), pages 116-123, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanguy Bernard & Sylvie Lambert & Karen Macours & Margaux Vinez, 2023. "Impact of small farmers' access to improved seeds and deforestation in DR Congo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Cao, Yanni & Kong, Lingqiao & Zhang, Lufeng & Ouyang, Zhiyun, 2021. "The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015," Land Use Policy, Elsevier, vol. 108(C).
    3. Qingqian He & Qing Meng & William Flatley & Yaqian He, 2022. "Examining the Effects of Agricultural Aid on Forests in Sub-Saharan Africa: A Causal Analysis Based on Remotely Sensed Data of Sierra Leone," Land, MDPI, vol. 11(5), pages 1-20, April.
    4. Wen-Yong Guo & Josep M. Serra-Diaz & Wolf L. Eiserhardt & Brian S. Maitner & Cory Merow & Cyrille Violle & Matthew J. Pound & Miao Sun & Ferry Slik & Anne Blach-Overgaard & Brian J. Enquist & Jens-Chr, 2023. "Climate change and land use threaten global hotspots of phylogenetic endemism for trees," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Kristian Steensen Nielsen & Theresa M. Marteau & Jan M. Bauer & Richard B. Bradbury & Steven Broad & Gayle Burgess & Mark Burgman & Hilary Byerly & Susan Clayton & Dulce Espelosin & Paul J. Ferraro & , 2021. "Biodiversity conservation as a promising frontier for behavioural science," Nature Human Behaviour, Nature, vol. 5(5), pages 550-556, May.
    6. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    7. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    8. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    9. Schwabe, Kurt A & Carson, Richard T & DeShazo, JR & Potts, Matthew D & Reese, Ashley N & Vincent, Jeffrey R, 2015. "Creation of Malaysia’s Royal Belum State Park: A Case Study of Conservation in a Developing Country," University of California at San Diego, Economics Working Paper Series qt9tf2j26s, Department of Economics, UC San Diego.
    10. Huang, Wei, 2019. "Forest condition change, tenure reform, and government-funded eco-environmental programs in Northeast China," Forest Policy and Economics, Elsevier, vol. 98(C), pages 67-74.
    11. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    12. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    13. Gyan Charitha de Silva & Eugenie Christine Regan & Edward Henry Beattie Pollard & Prue Frances Elizabeth Addison, 2019. "The evolution of corporate no net loss and net positive impact biodiversity commitments: Understanding appetite and addressing challenges," Business Strategy and the Environment, Wiley Blackwell, vol. 28(7), pages 1481-1495, November.
    14. Coomes, Oliver T. & Cheng, Yuanyu & Takasaki, Yoshito & Abizaid, Christian, 2021. "What drives clearing of old-growth forest over secondary forests in tropical shifting cultivation systems? Evidence from the Peruvian Amazon," Ecological Economics, Elsevier, vol. 189(C).
    15. I Wayan Susi Dharmawan & Nur M. Heriyanto & Raden Garsetiasih & Rozza Tri Kwatrina & Reny Sawitri & Denny & Titiek Setyawati & Pratiwi & Budi Hadi Narendra & Chairil Anwar Siregar & Ilham Kurnia Abywi, 2024. "The Dynamics of Vegetation Structure, Composition and Carbon Stock in Peatland Ecosystem of Old Secondary Forest in Riau and South Sumatra Provinces," Land, MDPI, vol. 13(5), pages 1-22, May.
    16. Blackman, Allen, 2015. "Strict versus mixed-use protected areas: Guatemala's Maya Biosphere Reserve," Ecological Economics, Elsevier, vol. 112(C), pages 14-24.
    17. Ullah, S M Asik & Tani, Masakazu & Tsuchiya, Jun & Rahman, M.Abiar & Moriyama, Masao, 2022. "Impact of protected areas and co-management on forest cover: A case study from Teknaf Wildlife Sanctuary, Bangladesh," Land Use Policy, Elsevier, vol. 113(C).
    18. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Serge Mandiefe Piabuo & Peter A. Minang & Chupezi Julius Tieguhong & Divine Foundjem-Tita & Frankline Nghobuoche, 2021. "Illegal logging, governance effectiveness and carbon dioxide emission in the timber-producing countries of Congo Basin and Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14176-14196, October.
    20. Verena Haider & Franz Essl & Klaus Peter Zulka & Stefan Schindler, 2022. "Achieving Transformative Change in Food Consumption in Austria: A Survey on Opportunities and Obstacles," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1437-:d:1197470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.