IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p5201-d1417627.html
   My bibliography  Save this article

Integrated Assessment of the Runoff and Heat Mitigation Effects of Vegetation in an Urban Residential Area

Author

Listed:
  • Xi Wu

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
    Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Qing Chang

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
    Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan 430065, China
    Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan)

  • So Kazama

    (Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan)

  • Yoshiya Touge

    (Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611-0011, Japan)

  • Shunsuke Aita

    (Department of Civil and Environmental Engineering, Tohoku University, Sendai 980-8579, Japan)

Abstract

Urban vegetation has an essential role in maintaining the hydrological and energy balance. These processes in urban areas have been long overlooked due to the fragmentation and uneven feature of land use and vegetation distribution. Recent advances in remote sensing and the ease of data acquisition have allowed a more precise mapping of vegetation and land cover, making it possible to simulate the above processes at micro scales. This research selects a small typical residential catchment in Japan as the study area and the purpose of this research is to investigate the impact of urban vegetation on mitigating urban runoff and the heat island effect. The remote-sensed Normalized Difference Vegetation Index (NDVI) data were used to represent vegetation spatial distribution and seasonal variation. A single layer canopy model and the Storm Water Management Model were coupled to simulate interception, evapotranspiration, and runoff generation processes. The effects of vegetation amount and landscape patterns on the above processes were also considered. The results showed that the coupled model had a satisfactory performance in the modeling of these processes. When the vegetation amount was set to 1.4 times its original value, the summer total runoff had a 10.7% reduction and the average surface temperature had a 2.5 °C reduction. While the vegetation amount was 0.8 times its original value, the total runoff increased by 6%, and the average surface temperature in summer increased by 1.5 °C. The combination of green roof and dense street trees showed the best mitigation performance among the different landscape patterns. The results of this study could be used as a reference for future green infrastructure development in areas with similar climate and vegetation characteristics.

Suggested Citation

  • Xi Wu & Qing Chang & So Kazama & Yoshiya Touge & Shunsuke Aita, 2024. "Integrated Assessment of the Runoff and Heat Mitigation Effects of Vegetation in an Urban Residential Area," Sustainability, MDPI, vol. 16(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5201-:d:1417627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/5201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/5201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Zhang & Gabriele Villarini & Gabriel A. Vecchi & James A. Smith, 2018. "Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston," Nature, Nature, vol. 563(7731), pages 384-388, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joowon Im, 2019. "Green Streets to Serve Urban Sustainability: Benefits and Typology," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    2. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    3. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    5. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    6. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    7. Tim Slack & Vanessa Parks & Lynsay Ayer & Andrew M. Parker & Melissa L. Finucane & Rajeev Ramchand, 2020. "Natech or natural? An analysis of hazard perceptions, institutional trust, and future storm worry following Hurricane Harvey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1207-1224, July.
    8. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    10. Catherine E. Paquette & Tasia Danns & Margaret Bordeaux & Zaire Cullins & Lauren Brinkley-Rubinstein, 2024. "Experiences Accessing Health and Social Services during and after Natural Disasters among People Who Use Drugs in Houston, Texas," IJERPH, MDPI, vol. 21(9), pages 1-10, September.
    11. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    12. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    13. Chenying Li & Tiantian Zhang & Xi Wang & Zefeng Lian, 2022. "Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China," IJERPH, MDPI, vol. 19(20), pages 1-27, October.
    14. Ghiwa Assaf & Rayan H. Assaad, 2023. "Optimal Preventive Maintenance, Repair, and Replacement Program for Catch Basins to Reduce Urban Flooding: Integrating Agent-Based Modeling and Monte Carlo Simulation," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    15. Mo Wang & Xiaoping Fu & Dongqing Zhang & Siwei Lou & Jianjun Li & Furong Chen & Shan Li & Soon Keat Tan, 2023. "Urban agglomeration waterlogging hazard exposure assessment based on an integrated Naive Bayes classifier and complex network analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2173-2197, September.
    16. Li Mo & Zhenguo Zhang & Jingjing Yao & Zeyu Ma & Xiaona Cong & Xinxiao Yu, 2024. "Analysis of Hydrological Changes in the Fuhe River Basin in the Context of Climate Change," Sustainability, MDPI, vol. 16(17), pages 1-14, August.
    17. Edward Helderop & Tony H. Grubesic, 2022. "Hurricane storm surge: toward a normalized damage index for coastal regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1179-1197, January.
    18. D. A. Sabӑu & Gh. Şerban & P. Breţcan & D. Dunea & D. Petrea & I. Rus & D. Tanislav, 2023. "Combining radar quantitative precipitation estimates (QPEs) with distributed hydrological model for controlling transit of flash-flood upstream of crowded human habitats in Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1209-1238, March.
    19. Michael Wehner & Christopher Sampson, 2021. "Attributable human-induced changes in the magnitude of flooding in the Houston, Texas region during Hurricane Harvey," Climatic Change, Springer, vol. 166(1), pages 1-13, May.
    20. Jayajit Chakraborty & Ashley A. McAfee & Timothy W. Collins & Sara E. Grineski, 2021. "Exposure to Hurricane Harvey flooding for subsidized housing residents of Harris County, Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2185-2205, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5201-:d:1417627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.