IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1124-d1580309.html
   My bibliography  Save this article

Efficient Urban Flooding Management: A Multi-Physical-Process-Oriented Flood Modelling and Analysis Method

Author

Listed:
  • Yongshuai Liang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resource and Hydropower Research, Beijing 100038, China)

  • Weihong Liao

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resource and Hydropower Research, Beijing 100038, China)

  • Hao Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resource and Hydropower Research, Beijing 100038, China)

Abstract

Flood models are essential for simulating and analysing urban flooding; however, accurately capturing the complex physical processes and their interactions remains challenging. This research introduces a multi-process flood modelling framework designed to generate realistic urban flood simulations. It integrates various hydrological and hydrodynamic processes through data-exchange synchronisation. A new surface flood control model (SFCM) was developed and applied in Huai’an District, China, using the storm water management model as its foundation. The SFCM was used to assess storm events, detect drainage outlets hindered by high river network water levels during extreme rainfall, and evaluate how river backflow affects drainage overflow and surface flooding. Results indicated that higher return periods of rainstorms reduced the number of drainage outlets obstructed by backwater, though backwater worsened surface flooding and drainage overflow. Compared to the current capacity of drainage outlets, using the maximum drainage capacity reduced the overflow rate of rainwater wells by 10.62% on average but increased river cross-section overflow by 1.72%. The average surface inundation area and maximum depth decreased by 0.78 km 2 and 0.05 m, respectively. This research introduces an innovative approach for simulating and analysing large-scale urban flooding, offering essential perspectives for urban planning and strategies to prevent flooding.

Suggested Citation

  • Yongshuai Liang & Weihong Liao & Hao Wang, 2025. "Efficient Urban Flooding Management: A Multi-Physical-Process-Oriented Flood Modelling and Analysis Method," Sustainability, MDPI, vol. 17(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1124-:d:1580309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. María I. Rodríguez-Rojas & Francisco Javier Garrido-Jiménez & Francisco Javier Abarca-Álvarez & Manuel Ricardo Vallecillos-Siles, 2024. "Advances in the Integration of Sustainable Drainage Systems into Urban Planning: A Case Study," Sustainability, MDPI, vol. 16(7), pages 1-11, March.
    2. Shujie Zou & Chiawei Chu & Weijun Dai & Ning Shen & Jia Ren & Weiping Ding, 2024. "Predicting Typhoon Flood in Macau Using Dynamic Gaussian Bayesian Network and Surface Confluence Analysis," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    3. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    4. Wei Zhang & Gabriele Villarini & Gabriel A. Vecchi & James A. Smith, 2018. "Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston," Nature, Nature, vol. 563(7731), pages 384-388, November.
    5. B. Tellman & J. A. Sullivan & C. Kuhn & A. J. Kettner & C. S. Doyle & G. R. Brakenridge & T. A. Erickson & D. A. Slayback, 2021. "Satellite imaging reveals increased proportion of population exposed to floods," Nature, Nature, vol. 596(7870), pages 80-86, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo Wang & Xiaoping Fu & Dongqing Zhang & Siwei Lou & Jianjun Li & Furong Chen & Shan Li & Soon Keat Tan, 2023. "Urban agglomeration waterlogging hazard exposure assessment based on an integrated Naive Bayes classifier and complex network analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2173-2197, September.
    2. Yu Hao & Chen Wang & Chaolun Sun & Delin Liu, 2024. "Evaluation and Spatial–Temporal Pattern Evolution of Synergy Degree of Emergency Management for Urban Flood Disasters from the Perspective of Sustainable Development—The Case of Henan, China," Sustainability, MDPI, vol. 16(11), pages 1-19, June.
    3. Joowon Im, 2019. "Green Streets to Serve Urban Sustainability: Benefits and Typology," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    4. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    5. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    7. Sean Fox & Felix Agyemang & Laurence Hawker & Jeffrey Neal, 2024. "Integrating social vulnerability into high-resolution global flood risk mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    9. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    10. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    11. Tim Slack & Vanessa Parks & Lynsay Ayer & Andrew M. Parker & Melissa L. Finucane & Rajeev Ramchand, 2020. "Natech or natural? An analysis of hazard perceptions, institutional trust, and future storm worry following Hurricane Harvey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1207-1224, July.
    12. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Cheng He & Yixiang Zhu & Lu Zhou & Jovine Bachwenkizi & Alexandra Schneider & Renjie Chen & Haidong Kan, 2024. "Flood exposure and pregnancy loss in 33 developing countries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Jeffrey D. Michler & Dewan Abdullah Al Rafi & Jonathan Giezendanner & Anna Josephson & Valerien O. Pede & Elizabeth Tellman, 2024. "Impact Evaluations in Data Poor Settings: The Case of Stress-Tolerant Rice Varieties in Bangladesh," Papers 2409.02201, arXiv.org.
    15. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    17. Catherine E. Paquette & Tasia Danns & Margaret Bordeaux & Zaire Cullins & Lauren Brinkley-Rubinstein, 2024. "Experiences Accessing Health and Social Services during and after Natural Disasters among People Who Use Drugs in Houston, Texas," IJERPH, MDPI, vol. 21(9), pages 1-10, September.
    18. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    19. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    20. Yixiang Zhu & Cheng He & Jovine Bachwenkizi & Zafar Fatmi & Lu Zhou & Jian Lei & Cong Liu & Haidong Kan & Renjie Chen, 2024. "Burden of infant mortality associated with flood in 37 African countries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1124-:d:1580309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.