IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8527-d1154765.html
   My bibliography  Save this article

Optimal Preventive Maintenance, Repair, and Replacement Program for Catch Basins to Reduce Urban Flooding: Integrating Agent-Based Modeling and Monte Carlo Simulation

Author

Listed:
  • Ghiwa Assaf

    (Smart Construction and Intelligent Infrastructure Systems (SCIIS) Lab, John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA)

  • Rayan H. Assaad

    (Smart Construction and Intelligent Infrastructure Systems (SCIIS) Lab, John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA)

Abstract

Urban sprawl has resulted in great losses of vegetation areas, an increase in impervious surfaces, and consequently the direct flow of stormwater into stream channels (i.e., the immediate flow of stormwater into stream channels, in comparison to the indirect flow that is represented by practices aiming to retain stormwater for a certain period of time and treat the polluted stormwater prior to flowing into the stream channels such as detention/retention basins, among others). Stormwater management systems such as catch basins (CBs) are needed to reduce the effect of stormwater runoff. Preventative maintenance, repair, and replacement of CBs are critical to achieve stormwater management best practices. Those practices prevent the blockage of the stormwater system, limit the pollutants in storm sewers, and reduce the risk of flooding. However, no preceding research studies have been conducted to model and simulate the serviceability of CBs and to determine optimal strategies for operating CBs. To that extent, this study establishes a framework to develop and validate an optimal and adaptive maintenance, repair, and overhaul (MRO) strategy for CBs. In relation to that, an agent-based model (ABM) integrated with Monte Carlo simulation was developed for all 560 CBs in New York City’s District 5 and was statistically validated using 99% confidence intervals. The MRO parameters were optimized to minimize the total cost of the system and attain the desired level of serviceability of CBs. Sensitivity analysis was conducted to guide the maintenance planning process of CBs and reveal the effect of the input parameters on the model’s behavior. In addition, ten thousand Monte Carlo iterations were simulated to derive the distributions of the defined parameters. The results proved that in order to minimize the overall cost of repair, maintenance, and replacement of CBs and attain a minimum serviceability threshold of 80%, the following optimal MRO policy needs to be implemented: having seven service crews (where service crews are human resources (i.e., MRO teams) needed to perform the required maintenance, repair, and replacement work), implementing a replacing policy, and replacing CBs after five maintenance periods. The findings revealed that the service crews represent the most critical parameter in affecting the total cost and serviceability of CBs. This research contributes to the existing literature by offering a better knowledge of the management process of CBs and devising optimal MRO strategies for properly operating them. Ultimately, this research helps decision-makers and engineers increase the lifespan of CBs and limit their risks of breakdown, increase their efficiency, and avoid unnecessary costs. The proposed model is flexible and can be implemented to any geographical area and with other model/system parameters, which makes it adaptive for any scenario and area presented by the user. Finally, maintaining stormwater management practices helps in protecting the environment by decreasing the demand on stormwater systems, reducing flooding, protecting people and properties, promoting healthier rivers, and consequently creating more sustainable communities.

Suggested Citation

  • Ghiwa Assaf & Rayan H. Assaad, 2023. "Optimal Preventive Maintenance, Repair, and Replacement Program for Catch Basins to Reduce Urban Flooding: Integrating Agent-Based Modeling and Monte Carlo Simulation," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8527-:d:1154765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Dubbelboer & Igor Nikolic & Katie Jenkins & Jim Hall, 2017. "An Agent-Based Model of Flood Risk and Insurance," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-6.
    2. Liang, Xin & Yu, Tao & Hong, Jingke & Shen, Geoffrey Qiping, 2019. "Making incentive policies more effective: An agent-based model for energy-efficiency retrofit in China," Energy Policy, Elsevier, vol. 126(C), pages 177-189.
    3. Konstantinos Kostarelos & Eakalak Khan & Nazzareno Callipo & Jennifer Velasquez & Dave Graves, 2011. "Field Study of Catch Basin Inserts for the Removal of Pollutants from Urban Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1205-1217, March.
    4. Wei Zhang & Gabriele Villarini & Gabriel A. Vecchi & James A. Smith, 2018. "Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston," Nature, Nature, vol. 563(7731), pages 384-388, November.
    5. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    6. Paul M. Kellstedt & Sammy Zahran & Arnold Vedlitz, 2008. "Personal Efficacy, the Information Environment, and Attitudes Toward Global Warming and Climate Change in the United States," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 113-126, February.
    7. Konstantinos Kostarelos & Eakalak Khan & Nazzareno Callipo & Jennifer Velasquez, 2011. "Erratum to: Field Study of Catch Basin Inserts for the Removal of Pollutants from Urban Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1251-1251, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An Liu & Ashantha Goonetilleke & Prasanna Egodawatta, 2012. "Inadequacy of Land Use and Impervious Area Fraction for Determining Urban Stormwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2259-2265, June.
    2. Wei Zhang & Yan Zhu & Xuejun Wang, 2014. "A Modeling Method to Evaluate the Management Strategy of Urban Storm Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 541-552, January.
    3. Joowon Im, 2019. "Green Streets to Serve Urban Sustainability: Benefits and Typology," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    4. Zhihui Wang & Liangzhen Nie & Eila Jeronen & Lihua Xu & Meiai Chen, 2023. "Understanding the Environmentally Sustainable Behavior of Chinese University Students as Tourists: An Integrative Framework," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    5. Walter Leal Filho & Mark Mifsud & Petra Molthan-Hill & Gustavo J. Nagy & Lucas Veiga Ávila & Amanda Lange Salvia, 2019. "Climate Change Scepticism at Universities: A Global Study," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    6. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    7. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    9. Sejung Park, 2020. "How Celebrities’ Green Messages on Twitter Influence Public Attitudes and Behavioral Intentions to Mitigate Climate Change," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    10. Veysel Yilmaz & Pınar Guleç & Erkan Ari, 2023. "Impact of climate change information of university students in Turkey on responsibility and environmental behavior through awareness and perceived risk," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7281-7297, July.
    11. Hye Kyung Kim & Yungwook Kim, 2019. "Risk Information Seeking and Processing About Particulate Air Pollution in South Korea: The Roles of Cultural Worldview," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1071-1087, May.
    12. József Kádár & Martina Pilloni & Tareq Abu Hamed, 2023. "A Survey of Renewable Energy, Climate Change, and Policy Awareness in Israel: The Long Path for Citizen Participation in the National Renewable Energy Transition," Energies, MDPI, vol. 16(5), pages 1-16, February.
    13. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    14. Carlynn Fagnant & Avantika Gori & Antonia Sebastian & Philip B. Bedient & Katherine B. Ensor, 2020. "Characterizing spatiotemporal trends in extreme precipitation in Southeast Texas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1597-1621, November.
    15. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    16. Tim Slack & Vanessa Parks & Lynsay Ayer & Andrew M. Parker & Melissa L. Finucane & Rajeev Ramchand, 2020. "Natech or natural? An analysis of hazard perceptions, institutional trust, and future storm worry following Hurricane Harvey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1207-1224, July.
    17. Eric Plutzer & A. Lee Hannah, 2018. "Teaching climate change in middle schools and high schools: investigating STEM education’s deficit model," Climatic Change, Springer, vol. 149(3), pages 305-317, August.
    18. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    19. Kauder, Björn & Potrafke, Niklas & Ursprung, Heinrich, 2018. "Behavioral determinants of proclaimed support for environment protection policies," European Journal of Political Economy, Elsevier, vol. 54(C), pages 26-41.
    20. Torsten Heinrich & Juan Sabuco & J. Doyne Farmer, 2022. "A simulation of the insurance industry: the problem of risk model homogeneity," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 535-576, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8527-:d:1154765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.