IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p4911-d1411040.html
   My bibliography  Save this article

Technical, Economic, and Environmental Sustainability Assessment of Reclaimed Asphalt and Waste Polyethylene Terephthalate Pavements

Author

Listed:
  • Zeerak Waryam Sajid

    (NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Arshad Hussian

    (NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Muhammad Umer Amin Khan

    (NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Fahad K. Alqahtani

    (Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Fahim Ullah

    (School of Surveying and Built Environment, University of Southern Queensland, Springfield, QLD 4300, Australia)

Abstract

In the era of the global drive for sustainability in line with the United Nations Sustainable Development Goals (UN SDGs), sustainability measures are encouraged to be taken at all levels. This study explores a novel mix design integrating Reclaimed Asphalt (RAP) with waste Polyethylene Terephthalate (PET) to enhance pavement performance and sustainability. It adopts a holistic approach by investigating the technical, economic, and environmental aspects of the proposed mix to assess its sustainability. Industry experts emphasize the necessity of mitigating the resource intensiveness of pavement construction to foster sustainable infrastructure. RAP enables resource-efficient pavement construction by promoting asphalt recycling. However, increasing RAP quantity in the mix compromises asphalt structural stability, making it more susceptible to moisture damage and rutting. In this study, PET-modified Bitumen (PMB) is incorporated in higher RAP quantities in the asphaltic mix without compromising asphalt’s structural performance and durability. Various PMB amounts (2% to 10% by mass of mixture) were tested with 40% RAP (by mass of mixture), evaluating performance in terms of moisture damage, Marshall stability, rutting, etc. Optimal results were achieved with 6% PET and 40% RAP, showing a 7%, 57%, and 23% improvement in moisture resistance, rutting resistance, and Marshall stability, respectively, compared to unmodified asphalt (technical aspects). The novel asphalt mix demonstrated a 17% reduction in material cost (economic aspect) and a 53% decrease in CO 2 emissions (environmental aspect) using Building Information Modeling (BIM). This study devises a prospective solution for the construction of resilient, resource-efficient, cost-effective, environmentally friendly, and sustainable pavements in line with UN SDGs and circular economy goals.

Suggested Citation

  • Zeerak Waryam Sajid & Arshad Hussian & Muhammad Umer Amin Khan & Fahad K. Alqahtani & Fahim Ullah, 2024. "Technical, Economic, and Environmental Sustainability Assessment of Reclaimed Asphalt and Waste Polyethylene Terephthalate Pavements," Sustainability, MDPI, vol. 16(12), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4911-:d:1411040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/4911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/4911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Eliza Godoi Bizarro & Zoran Steinmann & Isabel Nieuwenhuijse & Elisabeth Keijzer & Mara Hauck, 2021. "Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    2. Waqas Rafiq & Muhammad Ali Musarat & Muhammad Altaf & Madzlan Napiah & Muslich Hartadi Sutanto & Wesam Salah Alaloul & Muhammad Faisal Javed & Amir Mosavi, 2021. "Life Cycle Cost Analysis Comparison of Hot Mix Asphalt and Reclaimed Asphalt Pavement: A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    3. Yang, Rebekah & Kang, Seunggu & Ozer, Hasan & Al-Qadi, Imad L., 2015. "Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 141-151.
    4. Diana Movilla-Quesada & Aitor C. Raposeiras & Edgardo Guíñez & Almudena Frechilla-Alonso, 2023. "A Comparative Study of the Effect of Moisture Susceptibility on Polyethylene Terephthalate–Modified Asphalt Mixes under Different Regulatory Procedures," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    5. Meisam Khorshidi & Ahmad Goli & Marko Orešković & Kamiar Khayambashi & Mahmoud Ameri, 2023. "Performance Evaluation of Asphalt Mixtures Containing Different Proportions of Alternative Materials," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    2. Huang, T.Y. & Chiueh, P.T. & Lo, S.L., 2017. "Life-cycle environmental and cost impacts of reusing fly ash," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 255-260.
    3. Ling Xu & Mohsen Alae & Yinfei Du & Giuseppe Loprencipe & Paolo Peluso & Laura Moretti, 2023. "Thermal Characteristics and Temperature Distribution of Asphalt Mixtures Containing Residues from Municipal Solid Waste Incineration," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    4. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    5. Gislaine Luvizão & Glicério Trichês, 2023. "Case Study on Life Cycle Assessment Applied to Road Restoration Methods," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    6. Nura Shehu Aliyu Yaro & Muslich Hartadi Sutanto & Noor Zainab Habib & Aliyu Usman & Liza Evianti Tanjung & Muhammad Sani Bello & Azmatullah Noor & Abdullahi Haruna Birniwa & Ahmad Hussaini Jagaba, 2024. "Predicting the Influence of Pulverized Oil Palm Clinker as a Sustainable Modifier on Bituminous Concrete Fatigue Life: Advancing Sustainable Development Goals through Statistical and Predictive Analys," Sustainability, MDPI, vol. 16(16), pages 1-30, August.
    7. Natalia Cavero Wintruff & José Leomar Fernandes, 2023. "A Review on Life Cycle Assessment of Pavements in Brazil: Evaluating Environmental Impacts and Pavement Performance Integrating the International Roughness Index," Sustainability, MDPI, vol. 15(19), pages 1-20, September.
    8. Namho Cho & Mounir El Asmar & Mohammad Aldaaja, 2022. "An Analysis of the Impact of the Circular Economy Application on Construction and Demolition Waste in the United States of America," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    9. Wang, J. & Xiao, F. & Zhao, H., 2021. "Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Taísa Medina & João Luiz Calmon & Darli Vieira & Alencar Bravo & Thalya Vieira, 2023. "Life Cycle Assessment of Road Pavements That Incorporate Waste Reuse: A Systematic Review and Guidelines Proposal," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    11. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    12. Gabriella Buttitta & Gaspare Giancontieri & Tony Parry & Davide Lo Presti, 2023. "Modelling the Environmental and Economic Life Cycle Performance of Maximizing Asphalt Recycling on Road Pavement Surfaces in Europe," Sustainability, MDPI, vol. 15(19), pages 1-30, October.
    13. Mari-Isabella Stan & Dragos-Florian Vintila, 2021. "An Investigation of the Structure of Fixed Assets of Construction Companies in the Context of Coastal Area Development," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 171-178, August.
    14. Anne de Bortoli & Adélaïde Féraille & Fabien Leurent, 2022. "Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies," Post-Print hal-04483847, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4911-:d:1411040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.