IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i12p4893-d1410721.html
   My bibliography  Save this article

Comprehensive Comparative Analysis of Morphology Indexes for Solar Radiation Acquisition Potential in Lhasa Urban Residential Area

Author

Listed:
  • Guorui Song

    (School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710129, China)

  • Yu Liu

    (School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710129, China)

  • Wenqiang Li

    (Digitalize Civil Branch of China Railway 12th Bureau Co., Ltd., Xi’an 710076, China)

  • Jingbo Tan

    (School of Architecture, South China University of Technology, Guangzhou 510641, China)

  • Seigen Cho

    (Institute of Urban Innovation, Yokohama National University, Yokohama 240-8501, Japan)

Abstract

Solar energy is a type of renewable and sustainable energy. Enhancing the acquisition and utilization of solar radiation in urban residential areas is a crucial strategy for advancing sustainable development goals. The morphology of urban residential areas plays a vital role in determining their solar radiation acquisition (SRA) potential. Existing studies have primarily focused on exploring the correlation between the individual morphology index and SRA potential for residential areas. However, in the actual process of project design, there is a common need to simultaneously adjust multiple morphology indexes according to specific criteria. The question of “How to compare the magnitude of the impact of simultaneous changes in multiple morphology indexes on the SRA potential of a residential area” has not yet been systematically analyzed and fully answered. This study compares the sensitivity of multiple morphology indexes when changed collectively and assesses their comprehensive impact on the SRA potential of residential areas. The aim is to determine how to comprehensively control multiple morphology indexes in the early planning and design stages to maximize solar energy utilization in residential areas. It is concluded that, when considering the floor area ratio index under identical conditions, an increase in building density proves more advantageous for enhancing SRA compared to an increase in building height. In cases where the building height is less than 24 m and the floor area ratio is below 1.5, elevating the building density yields greater photovoltaic (PV) potential for the residential area. With a limited site area, the impact of building height on SRA far outweighs that of the layout. The layout does not significantly affect the annual solar radiation amount per unit of external surface area (ASU). With increasing building height, the impact of layout on heating season solar radiation amount per unit of external surface area (HSU) becomes more pronounced. A vertical staggered layout and a row layout exhibit significantly superior performance compared to a horizontal staggered layout in this regard. However, when the building height exceeds 24 m and the floor area ratio surpasses 1.5, the PV potential of the vertical staggered layout surpasses that of the row layout and horizontal staggered layout for the same building height. The influence of building height on SRA is slightly greater than that of the building orientation under similar conditions. The change in SRA potential with orientation under the same height follows a consistent pattern.

Suggested Citation

  • Guorui Song & Yu Liu & Wenqiang Li & Jingbo Tan & Seigen Cho, 2024. "Comprehensive Comparative Analysis of Morphology Indexes for Solar Radiation Acquisition Potential in Lhasa Urban Residential Area," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4893-:d:1410721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/12/4893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/12/4893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Rui & Wong, Man Sing & You, Linlin & Santi, Paolo & Nichol, Janet & Ho, Hung Chak & Lu, Lin & Ratti, Carlo, 2020. "The effect of urban morphology on the solar capacity of three-dimensional cities," Renewable Energy, Elsevier, vol. 153(C), pages 1111-1126.
    2. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wu & Yisheng Liu, 2023. "Impact of Urban Form at the Block Scale on Renewable Energy Application and Building Energy Efficiency," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    2. Liu, Bo & Liu, Yu & Cho, Seigen & Chow, David Hou Chi, 2024. "Urban morphology indicators and solar radiation acquisition: 2011–2022 review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Zhu, Rui & Cheng, Cheng & Santi, Paolo & Chen, Min & Zhang, Xiaohu & Mazzarello, Martina & Wong, Man Sing & Ratti, Carlo, 2022. "Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand," Applied Energy, Elsevier, vol. 316(C).
    4. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    5. Zhu, Rui & Kondor, Dániel & Cheng, Cheng & Zhang, Xiaohu & Santi, Paolo & Wong, Man Sing & Ratti, Carlo, 2022. "Solar photovoltaic generation for charging shared electric scooters," Applied Energy, Elsevier, vol. 313(C).
    6. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    7. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    8. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    9. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    10. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
    11. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    12. Francesco De Luca, 2023. "Advances in Climatic Form Finding in Architecture and Urban Design," Energies, MDPI, vol. 16(9), pages 1-18, May.
    13. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    14. Simone Giostra & Gabriele Masera & Rafaella Monteiro, 2022. "Solar Typologies: A Comparative Analysis of Urban Form and Solar Potential," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    15. Wu, Zhuochun & Kang, Jidong & Mosteiro-Romero, Martín & Bartolini, Andrea & Ng, Tsan Sheng & Su, Bin, 2024. "A distributionally robust optimization model for building-integrated photovoltaic system expansion planning under demand and irradiance uncertainties," Applied Energy, Elsevier, vol. 372(C).
    16. Aleksandra Stachera & Adam Stolarski & Mariusz Owczarek & Marek Telejko, 2022. "A Method of Multi-Criteria Assessment of the Building Energy Consumption," Energies, MDPI, vol. 16(1), pages 1-32, December.
    17. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    18. Philipp Rode & Alexandra Gomes & Muhammad Adeel & Fizzah Sajjad & Andreas Koch & Syed Monjur Murshed, 2020. "Between Abundance and Constraints: The Natural Resource Equation of Asia’s Diverging, Higher-Income City Models," Land, MDPI, vol. 9(11), pages 1-33, October.
    19. Thai, Clinton & Brouwer, Jack, 2021. "Challenges estimating distributed solar potential with utilization factors: California universities case study," Applied Energy, Elsevier, vol. 282(PB).
    20. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:4893-:d:1410721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.