IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021329.html
   My bibliography  Save this article

Building sustainable urban energy systems: The role of linked data in photovoltaic generation estimation at neighbourhood level

Author

Listed:
  • Liu, Xuan
  • Yang, Dujuan
  • Donkers, Alex
  • de Vries, Bauke

Abstract

The imperative of sustainable urban development demands reductions in energy consumption and carbon emissions. Solar energy emerges as a pivotal player in facilitating the vision of energy transition, serving as a significant renewable energy source for the urban sector. To advance the goals of energy transition and carbon neutrality, it is critical to comprehend the photovoltaic (PV) generation planning at the neighbourhood level, as it offers opportunities that do not exist at either the household level or city level. However, there is a lack of studies that focus on the integration of PV energy generation prediction at the neighbourhood level due to the complexity arising from the abundance of data from disparate disciplines. Supporting the estimation process for electric energy generation is important for neighbourhood level grid-resolving energy planning and management. Semantic web technologies present a promising approach to address the challenge. Through this method, we have developed the Neighbourhood Photovoltaic Generation Ontology (NPO), designed to integrate heterogeneous data to facilitate electric energy estimation processes. This approach streamlines PV energy generation estimation and enriches the data structure by improving the interoperability of data across various formats. A case study in the Netherlands validated the methodology using monthly PV energy generation data, demonstrating that our semantic-based framework significantly enhances the estimation process. The findings demonstrate the potential of semantic web technologies for neighbourhood-level energy planning and management, offering a scalable model that can be adapted to other urban settings. Moreover, the research contributes to the body of knowledge by illustrating how linked data can be strategically support energy transition goals and carbon neutrality initiatives at the neighbourhood level.

Suggested Citation

  • Liu, Xuan & Yang, Dujuan & Donkers, Alex & de Vries, Bauke, 2025. "Building sustainable urban energy systems: The role of linked data in photovoltaic generation estimation at neighbourhood level," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021329
    DOI: 10.1016/j.apenergy.2024.124749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Meral, Mehmet Emin & Dinçer, Furkan, 2011. "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2176-2184, June.
    3. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    4. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    5. Casalicchio, Valeria & Manzolini, Giampaolo & Prina, Matteo Giacomo & Moser, David, 2022. "From investment optimization to fair benefit distribution in renewable energy community modelling," Applied Energy, Elsevier, vol. 310(C).
    6. Fouad, M.M. & Shihata, Lamia A. & Morgan, ElSayed I., 2017. "An integrated review of factors influencing the perfomance of photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1499-1511.
    7. Jan Schweikert & Karl-Uwe Stucky & Wolfgang Süß & Veit Hagenmeyer, 2023. "A Photovoltaic System Model Integrating FAIR Digital Objects and Ontologies," Energies, MDPI, vol. 16(3), pages 1-21, February.
    8. Maria Fotopoulou & Panagiotis Pediaditis & Niki Skopetou & Dimitrios Rakopoulos & Sotirios Christopoulos & Avraam Kartalidis, 2024. "A Review of the Energy Storage Systems of Non-Interconnected European Islands," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
    9. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2020. "Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria," Renewable Energy, Elsevier, vol. 152(C), pages 217-228.
    10. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    11. Liu, Xuan & Yang, Dujuan & Arentze, Theo & Wielders, Tom, 2023. "The willingness of social housing tenants to participate in natural gas-free heating systems project: Insights from a stated choice experiment in the Netherlands," Applied Energy, Elsevier, vol. 350(C).
    12. Bagheri, Mehdi & Delbari, Seyed Hamid & Pakzadmanesh, Mina & Kennedy, Christopher A., 2019. "City-integrated renewable energy design for low-carbon and climate-resilient communities," Applied Energy, Elsevier, vol. 239(C), pages 1212-1225.
    13. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    14. Aghamolaei, Reihaneh & Shamsi, Mohammad Haris & O’Donnell, James, 2020. "Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations," Renewable Energy, Elsevier, vol. 157(C), pages 793-808.
    15. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    16. Séverine Saintier, 2017. "Community Energy Companies in the UK: A Potential Model for Sustainable Development in “Local” Energy?," Sustainability, MDPI, vol. 9(8), pages 1-18, July.
    17. Schepel, Veikko & Tozzi, Arianna & Klement, Marianne & Ziar, Hesan & Isabella, Olindo & Zeman, Miro, 2020. "The Dutch PV portal 2.0: An online photovoltaic performance modeling environment for the Netherlands," Renewable Energy, Elsevier, vol. 154(C), pages 175-186.
    18. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    2. Lobaccaro, G. & Croce, S. & Lindkvist, C. & Munari Probst, M.C. & Scognamiglio, A. & Dahlberg, J. & Lundgren, M. & Wall, M., 2019. "A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 209-237.
    3. Huxley, O.T. & Taylor, J. & Everard, A. & Briggs, J. & Tilley, K. & Harwood, J. & Buckley, A., 2022. "The uncertainties involved in measuring national solar photovoltaic electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Roberts Lazdins & Anna Mutule & Diana Zalostiba, 2021. "PV Energy Communities—Challenges and Barriers from a Consumer Perspective: A Literature Review," Energies, MDPI, vol. 14(16), pages 1-20, August.
    5. Di Lorenzo, Gianfranco & Rotondo, Sara & Araneo, Rodolfo & Petrone, Giovanni & Martirano, Luigi, 2021. "Innovative power-sharing model for buildings and energy communities," Renewable Energy, Elsevier, vol. 172(C), pages 1087-1102.
    6. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    7. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    8. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    10. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    11. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    12. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    13. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    14. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    15. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    16. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    17. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    18. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    19. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    20. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.