IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4783-d1408554.html
   My bibliography  Save this article

An Emissions Offset Strategy to Accomplish 2 °C Long-Term Mitigation Goals in the European Union

Author

Listed:
  • Ilaria Perissi

    (Global Sustainability Institute, Anglia Ruskin University, Cambridge CB1 1PT, UK)

  • Aled Jones

    (Global Sustainability Institute, Anglia Ruskin University, Cambridge CB1 1PT, UK)

Abstract

Regional carbon budgeting in policymaking is underutilized despite its importance for achieving global climate goals, particularly the Paris Agreement’s target of limiting global warming to 2 °C by 2050. In this work, we present the model PLEDGES, a novel system dynamic-based simulation tool that focuses on the European Union region to equitably distribute carbon budgets among the Member States and activate emissions offset strategies to manage unexpected deviations from the EU27 carbon budget. The emissions trading dynamic is based on the “Gains from Trade” approach. The tool also calculates the cost of the offset strategies based on the use of the abatement cost curves for the Member States. Using a case study of the recent increase in carbon emissions in Germany in response to reduced Russian gas supplies, different emissions scenarios for Germany’s quota redistribution among the Member States are explored. The study reveals varied cost implications of between 30–60 Eur/ton CO 2eq to offset the emissions increase across other Member States. Final recommendations include promoting cross-border collaboration at the EU27 level.

Suggested Citation

  • Ilaria Perissi & Aled Jones, 2024. "An Emissions Offset Strategy to Accomplish 2 °C Long-Term Mitigation Goals in the European Union," Sustainability, MDPI, vol. 16(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4783-:d:1408554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vicki Duscha & Alexandra Denishchenkova & Jakob Wachsmuth, 2019. "Achievability of the Paris Agreement targets in the EU: demand-side reduction potentials in a carbon budget perspective," Climate Policy, Taylor & Francis Journals, vol. 19(2), pages 161-174, February.
    2. Joeri Rogelj & Piers M. Forster & Elmar Kriegler & Christopher J. Smith & Roland Séférian, 2019. "Estimating and tracking the remaining carbon budget for stringent climate targets," Nature, Nature, vol. 571(7765), pages 335-342, July.
    3. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    4. Olga Alcaraz & Pablo Buenestado & Beatriz Escribano & Bàrbara Sureda & Albert Turon & Josep Xercavins, 2018. "Distributing the Global Carbon Budget with climate justice criteria," Climatic Change, Springer, vol. 149(2), pages 131-145, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camilla C. N. Oliveira & Gerd Angelkorte & Pedro R. R. Rochedo & Alexandre Szklo, 2021. "The role of biomaterials for the energy transition from the lens of a national integrated assessment model," Climatic Change, Springer, vol. 167(3), pages 1-22, August.
    2. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    3. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    4. Yuhanis Ladewi & Meiryani Meiryani & Ahmad Syamil & Agustini Agustini & Agustinus Winoto, 2024. "The Relation between Climate Change and Carbon Emission Trading: A Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 686-697, January.
    5. Tinta, Abdoulganiour Almame, 2023. "Energy substitution in Africa: Cross-regional differentiation effects," Energy, Elsevier, vol. 263(PA).
    6. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    7. May Elsayyad & Florian Morath, 2016. "Technology Transfers For Climate Change," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(3), pages 1057-1084, August.
    8. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    9. Mengfei Jiang & Xi Liang & David Reiner & Boqiang Lin & Maosheng Duan, 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Working Papers EPRG 1805, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    11. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    12. Wifo, 2019. "WIFO-Monatsberichte, Heft 7/2019," WIFO Monatsberichte (monthly reports), WIFO, vol. 92(7), July.
    13. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    14. Tim T. Pedersen & Mikael Skou Andersen & Marta Victoria & Gorm B. Andresen, 2021. "30.000 ways to reach 55% decarbonization of the European electricity sector," Papers 2112.07247, arXiv.org, revised Nov 2022.
    15. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    16. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Letmathe, Peter & Wagner, Sandra, 2018. "“Messy” marginal costs: Internal pricing of environmental aspects on the firm level," International Journal of Production Economics, Elsevier, vol. 201(C), pages 41-52.
    18. Cunha, Felipe Arias Fogliano de Souza & Börner, Jan & Wunder, Sven & Cosenza, Carlos Alberto Nunes & Lucena, André F.P., 2016. "The implementation costs of forest conservation policies in Brazil," Ecological Economics, Elsevier, vol. 130(C), pages 209-220.
    19. Shinichiro Asayama, 2021. "Threshold, budget and deadline: beyond the discourse of climate scarcity and control," Climatic Change, Springer, vol. 167(3), pages 1-16, August.
    20. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4783-:d:1408554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.