IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4215-d1396548.html
   My bibliography  Save this article

Predictive Modeling and Validation of Carbon Emissions from China’s Coastal Construction Industry: A BO-XGBoost Ensemble Approach

Author

Listed:
  • Yunfei Hou

    (School of Traffic and Transportation of Engineering, Changsha University of Science and Technology, Changsha 410114, China
    National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China)

  • Shouwei Liu

    (School of Traffic and Transportation of Engineering, Changsha University of Science and Technology, Changsha 410114, China)

Abstract

The extensive carbon emissions produced throughout the life cycle of buildings have significant impacts on environmental sustainability. Addressing the Carbon Emissions from China’s Construction Industry (CECI), this study uses panel data from seven coastal areas (2005–2020) and the Bayesian Optimization Extreme Gradient Boosting (BO-XGBoost) model to accurately predict carbon emissions. Initially, the carbon emission coefficient method is utilized to calculate the CECI. Subsequently, adopting the concept of a fixed-effects model to transform provincial differences into influencing factors, we employ a method combining Spearman rank correlation coefficients to filter out these influencing factors. Finally, the performance of the prediction model is validated using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-squared ( R 2 ) and Mean Absolute Percentage Error (MAPE). The results indicate that the total CECI for the seven provinces and cities increased from 3.1 billion tons in 2005 to 17.2 billion tons in 2020, with Shandong Province having the highest CECI and Hainan Province having the lowest. The total population, Gross Domestic Product (GDP) and floor space of the buildings completed passed the significance test, among a total of eight factors. These factors can be considered explanatory variables for the CECI prediction model. The BO-XGBoost algorithm demonstrates outstanding predictive performance, achieving an R 2 of 0.91. The proposed model enables potential decisions to quantitatively target the prominent factors contributing to the CECI. Its application can guide policymakers and decision makers toward implementing effective strategies for reducing carbon emissions, thereby fostering sustainable development in the construction industry.

Suggested Citation

  • Yunfei Hou & Shouwei Liu, 2024. "Predictive Modeling and Validation of Carbon Emissions from China’s Coastal Construction Industry: A BO-XGBoost Ensemble Approach," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4215-:d:1396548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    2. Wakiyama, Takako & Kuramochi, Takeshi, 2017. "Scenario analysis of energy saving and CO2 emissions reduction potentials to ratchet up Japanese mitigation target in 2030 in the residential sector," Energy Policy, Elsevier, vol. 103(C), pages 1-15.
    3. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    2. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    3. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    5. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    6. Jallal, Mohammed Ali & González-Vidal, Aurora & Skarmeta, Antonio F. & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction," Applied Energy, Elsevier, vol. 268(C).
    7. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    8. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    9. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    10. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    11. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Farid Shahnavaz & Reza Akhavian, 2022. "Automated Estimation of Construction Equipment Emission Using Inertial Sensors and Machine Learning Models," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    13. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    14. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    15. Marzouk, Mohamed & Seleem, Noreihan, 2018. "Assessment of existing buildings performance using system dynamics technique," Applied Energy, Elsevier, vol. 211(C), pages 1308-1323.
    16. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    17. Hamid R. Khosravani & María Del Mar Castilla & Manuel Berenguel & Antonio E. Ruano & Pedro M. Ferreira, 2016. "A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building," Energies, MDPI, vol. 9(1), pages 1-24, January.
    18. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    19. Yeguan Yu, 2023. "The Impact of Financial System on Carbon Intensity: From the Perspective of Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    20. Li, Dezhi & Huang, Guanying & Zhu, Shiyao & Chen, Long & Wang, Jiangbo, 2021. "How to peak carbon emissions of provincial construction industry? Scenario analysis of Jiangsu Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4215-:d:1396548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.