IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4210-d1396447.html
   My bibliography  Save this article

Impact of Anthropomorphic Design on User Sentiment and Sustained Use Intention towards Household Healthcare

Author

Listed:
  • Qiaoyu Feng

    (School of Fashion and Design Art, Sichuan Normal University, Chengdu 610101, China)

  • Si Cheng

    (School of Fashion and Design Art, Sichuan Normal University, Chengdu 610101, China)

  • Hu Meng

    (College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China)

Abstract

Although the household healthcare system is one of the cutting-edge application areas of anthropomorphic design, it remains to be further explored whether anthropomorphism is always effective. This article focuses on the context of aging-friendly household healthcare services and explores how anthropomorphic design affects users’ sustained use intention through sentiment feedback mechanisms. With the help of questionnaire surveys, 511 valid samples were randomly collected for empirical analysis and hypothesis testing. The results showed that positive interactions, cultural backgrounds, and appearance could enhance users’ perception of anthropomorphism from large to small. In addition, the positive (negative) sentiment of users plays a positive (negative) full mediating role in the relationship between anthropomorphic design and sustained use intention, and user technology anxiety moderates such relationships. That is, compared to low-level technology anxiety, in high-level states, anthropomorphic design for household healthcare systems and products has a weaker (stronger) positive (negative) effect on sustained use intention through positive (negative) emotions.

Suggested Citation

  • Qiaoyu Feng & Si Cheng & Hu Meng, 2024. "Impact of Anthropomorphic Design on User Sentiment and Sustained Use Intention towards Household Healthcare," Sustainability, MDPI, vol. 16(10), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4210-:d:1396447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Adam & Michael Wessel & Alexander Benlian, 2021. "AI-based chatbots in customer service and their effects on user compliance," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 427-445, June.
    2. Yunjeong Ahn & Jieun Lee, 2021. "The Role of Anthropomorphic Messengers in Sustainable Participatory Corporate Social Responsibility: Focusing on Messenger’s Facial Expression and Participation Effort," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    3. Meyer-Waarden, Lars & Cloarec, Julien, 2022. "“Baby, you can drive my car”: Psychological antecedents that drive consumers’ adoption of AI-powered autonomous vehicles," Technovation, Elsevier, vol. 109(C).
    4. Seo Young Kim & Bernd H. Schmitt & Nadia M. Thalmann, 2019. "Eliza in the uncanny valley: anthropomorphizing consumer robots increases their perceived warmth but decreases liking," Marketing Letters, Springer, vol. 30(1), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengjun Li & Ayoung Suh, 2022. "Anthropomorphism in AI-enabled technology: A literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2245-2275, December.
    2. Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
    3. Talaei-Khoei, Amir & Yang, Alan T. & Masialeti, Masialeti, 2024. "How does incorporating ChatGPT within a firm reinforce agility-mediated performance? The moderating role of innovation infusion and firms’ ethical identity," Technovation, Elsevier, vol. 132(C).
    4. Massilva Dekkal & Manon Arcand & Sandrine Prom Tep & Lova Rajaobelina & Line Ricard, 2024. "Factors affecting user trust and intention in adopting chatbots: the moderating role of technology anxiety in insurtech," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 29(3), pages 699-728, September.
    5. Song, Mengmeng & Xing, Xinyu & Duan, Yucong & Cohen, Jason & Mou, Jian, 2022. "Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
    6. Na Cai & Shuhong Gao & Jinzhe Yan, 2024. "How the communication style of chatbots influences consumers’ satisfaction, trust, and engagement in the context of service failure," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    7. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    8. Liu, Xing (Stella) & Wan, Lisa C. & Yi, Xiao (Shannon), 2022. "Humanoid versus non-humanoid robots: How mortality salience shapes preference for robot services under the COVID-19 pandemic?," Annals of Tourism Research, Elsevier, vol. 94(C).
    9. Aubel Martin & Pikturniene Indre & Joye Yannick, 2022. "Risk Perception and Risk Behavior in Response to Service Robot Anthropomorphism in Banking," Journal of Management and Business Administration. Central Europe, Sciendo, vol. 30(2), pages 26-42, June.
    10. Song, Christina Soyoung & Kim, Youn-Kyung, 2022. "The role of the human-robot interaction in consumers’ acceptance of humanoid retail service robots," Journal of Business Research, Elsevier, vol. 146(C), pages 489-503.
    11. Park, Gain & Park, YounJung & Lee, Seyoung, 2024. "Compliance-gaining in metaverse: A moderated parallel mediation model testing the interaction between legitimization of paltry favors technique and victim identification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    12. Arpan Kumar Kar & P. S. Varsha & Shivakami Rajan, 2023. "Unravelling the Impact of Generative Artificial Intelligence (GAI) in Industrial Applications: A Review of Scientific and Grey Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 659-689, December.
    13. Baabdullah, Abdullah M. & Alalwan, Ali Abdallah & Algharabat, Raed S. & Metri, Bhimaraya & Rana, Nripendra P., 2022. "Virtual agents and flow experience: An empirical examination of AI-powered chatbots," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    14. Andreas Engelmann & Gerhard Schwabe, 2024. "Certified data chats for future used car markets," Electronic Markets, Springer;IIM University of St. Gallen, vol. 34(1), pages 1-22, December.
    15. Jana Holthöwer & Jenny Doorn, 2023. "Robots do not judge: service robots can alleviate embarrassment in service encounters," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 767-784, July.
    16. Justina Sidlauskiene & Yannick Joye & Vilte Auruskeviciene, 2023. "AI-based chatbots in conversational commerce and their effects on product and price perceptions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-21, December.
    17. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    18. Volles, Barbara Kobuszewki & Park, Jaewoo & Van Kerckhove, Anneleen & Geuens, Maggie, 2024. "How and when do virtual influencers positively affect consumer responses to endorsed brands?," Journal of Business Research, Elsevier, vol. 183(C).
    19. Benedict G. C. Dellaert & Suzanne B. Shu & Theo A. Arentze & Tom Baker & Kristin Diehl & Bas Donkers & Nathanael J. Fast & Gerald Häubl & Heidi Johnson & Uma R. Karmarkar & Harmen Oppewal & Bernd H. S, 2020. "Consumer decisions with artificially intelligent voice assistants," Marketing Letters, Springer, vol. 31(4), pages 335-347, December.
    20. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4210-:d:1396447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.