IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p60-d1303991.html
   My bibliography  Save this article

Comprehensive Review of Crystalline Silicon Solar Panel Recycling: From Historical Context to Advanced Techniques

Author

Listed:
  • Pin-Han Chen

    (Department of Resources Engineering, National Cheng Kung University, Tainan City 701401, Taiwan)

  • Wei-Sheng Chen

    (Department of Resources Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
    Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 701401, Taiwan)

  • Cheng-Han Lee

    (Department of Resources Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
    Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan City 701401, Taiwan)

  • Jun-Yi Wu

    (Department of Intelligent Automation Engineering, National Chin-Yi University, Taichung City 411030, Taiwan)

Abstract

This review addresses the growing need for the efficient recycling of crystalline silicon photovoltaic modules (PVMs), in the context of global solar energy adoption and the impending surge in end-of-life (EoL) panel waste. It examines current recycling methodologies and associated challenges, given PVMs’ finite lifespan and the anticipated rise in solar panel waste. The study explores various recycling methods—mechanical, thermal, and chemical—each with unique advantages and limitations. Mechanical recycling, while efficient, faces economic and environmental constraints. Thermal methods, particularly pyrolysis, effectively break down organic materials but are energy-intensive. Chemical processes are adept at recovering high-purity materials but struggle with ecological and cost considerations. The review also highlights multifaceted challenges in recycling, including hazardous by-product generation, environmental impact, and the economic feasibility of recycling infrastructures. The conclusion emphasizes the need for innovative, sustainable, and economically viable recycling technologies. Such advancements, alongside global standards and policy development, are crucial for the long-term sustainability of solar energy and effective management of PVM waste.

Suggested Citation

  • Pin-Han Chen & Wei-Sheng Chen & Cheng-Han Lee & Jun-Yi Wu, 2023. "Comprehensive Review of Crystalline Silicon Solar Panel Recycling: From Historical Context to Advanced Techniques," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:60-:d:1303991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/60/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jovan Tan & Fabien Jianwei Tan & Seeram Ramakrishna, 2022. "Transitioning to a Circular Economy: A Systematic Review of Its Drivers and Barriers," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    2. Majewski, Peter & Al-shammari, Weam & Dudley, Michael & Jit, Joytishna & Lee, Sang-Heon & Myoung-Kug, Kim & Sung-Jim, Kim, 2021. "Recycling of solar PV panels- product stewardship and regulatory approaches," Energy Policy, Elsevier, vol. 149(C).
    3. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    4. Domínguez, Adriana & Geyer, Roland, 2017. "Photovoltaic waste assessment in Mexico," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 29-41.
    5. Songi Kim & Bongju Jeong, 2016. "Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    6. Kumar, Amit & Holuszko, Maria & Espinosa, Denise Crocce Romano, 2017. "E-waste: An overview on generation, collection, legislation and recycling practices," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 32-42.
    7. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amjad Ali & Muhammad Shahid & Sikandar Abdul Qadir & Md Tasbirul Islam & Muhammad Waseem Khan & Shoaib Ahmed, 2024. "Solar PV End-of-Life Waste Recycling: An Assessment of Mechanical Recycling Methods and Proposed Hybrid Laser and High Voltage Pulse Crushing Method," Resources, MDPI, vol. 13(12), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    2. Souza, Vanessa & Rodrigues Figueiredo, Adriano Marcos & Santos Bortolocci Espejo, Márcia Maria dos, 2024. "Challenges and strategies for managing end-of-life photovoltaic equipment in Brazil: Learning from international experience," Energy Policy, Elsevier, vol. 188(C).
    3. Dias, Pablo R. & Schmidt, Lucas & Chang, Nathan L. & Monteiro Lunardi, Marina & Deng, Rong & Trigger, Blair & Bonan Gomes, Lucas & Egan, Renate & Veit, Hugo, 2022. "High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Nain, Preeti & Kumar, Arun, 2020. "Initial metal contents and leaching rate constants of metals leached from end-of-life solar photovoltaic waste: An integrative literature review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Maciej Chrzanowski & Piotr Zawada, 2023. "Fraction Separation Potential in the Recycling Process of Photovoltaic Panels at the Installation Site—A Conceptual Framework from an Economic and Ecological Safety Perspective," Energies, MDPI, vol. 16(5), pages 1-10, February.
    6. Jain, Suresh & Sharma, Tanya & Gupta, Anil Kumar, 2022. "End-of-life management of solar PV waste in India: Situation analysis and proposed policy framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).
    8. Amjad Ali & Md Tasbirul Islam & Shafiqur Rehman & Sikandar Abdul Qadir & Muhammad Shahid & Muhammad Waseem Khan & Md. Hasan Zahir & Asif Islam & Muhammad Khalid, 2024. "Solar Photovoltaic Module End-of-Life Waste Management Regulations: International Practices and Implications for the Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 16(16), pages 1-37, August.
    9. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    10. Neves, Sónia Almeida & Marques, António Cardoso & de Sá Lopes, Leonardo Batista, 2024. "Is environmental regulation keeping e-waste under control? Evidence from e-waste exports in the European Union," Ecological Economics, Elsevier, vol. 216(C).
    11. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    12. Joanicjusz Nazarko & Ewa Chodakowska & Łukasz Nazarko, 2022. "Evaluating the Transition of the European Union Member States towards a Circular Economy," Energies, MDPI, vol. 15(11), pages 1-24, May.
    13. Thaib Alharethi & Ayman Abdelhakim & Ahmad Mohammed, 2024. "Drivers and Barriers towards Circular Economy in Rural Tourism Destinations: A Case Study of Tunis Village, Egypt," Tourism and Hospitality, MDPI, vol. 5(3), pages 1-18, July.
    14. Saurabh P. Tembhare & Bharat A. Bhanvase & Divya P. Barai & Sanjay J. Dhoble, 2022. "E-waste recycling practices: a review on environmental concerns, remediation and technological developments with a focus on printed circuit boards," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 8965-9047, July.
    15. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    16. Biswajit Debnath & Amit K. Chattopadhyay & T. Krishna Kumar, 2024. "An Economic Optimization Model of an E-Waste Supply Chain Network: Machine Learned Kinetic Modelling for Sustainable Production," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    17. Fabian Schoden & Anna Katharina Schnatmann & Tomasz Blachowicz & Hildegard Manz-Schumacher & Eva Schwenzfeier-Hellkamp, 2022. "Circular Design Principles Applied on Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
    18. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    19. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    20. Altaf Hossain Molla & Hilal Shams & Zambri Harun & Mohd Nizam Ab Rahman & Hawa Hishamuddin, 2022. "An Assessment of Drivers and Barriers to Implementation of Circular Economy in the End-of-Life Vehicle Recycling Sector in India," Sustainability, MDPI, vol. 14(20), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:60-:d:1303991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.