IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p243-d1308321.html
   My bibliography  Save this article

Robust Optimization of Large-Scale Wind–Solar Storage Renewable Energy Systems Considering Hybrid Storage Multi-Energy Synergy

Author

Listed:
  • Bin Xiao

    (Northwest Engineering Corporation Limited, PowerChina, Xi’an 710065, China)

  • Zhenxin Gao

    (Northwest Engineering Corporation Limited, PowerChina, Xi’an 710065, China
    School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Huaiwu Peng

    (Northwest Engineering Corporation Limited, PowerChina, Xi’an 710065, China)

  • Kang Chen

    (Northwest Engineering Corporation Limited, PowerChina, Xi’an 710065, China)

  • Yang Li

    (School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Kun Liu

    (School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

With the rapid integration of renewable energy sources, such as wind and solar, multiple types of energy storage technologies have been widely used to improve renewable energy generation and promote the development of sustainable energy systems. Energy storage can provide fast response and regulation capabilities, but multiple types of energy storage involve different energy conversion relationships. How to fully utilize the advantages of multiple energy storage and coordinate the multi-energy complementarity of multiple energy storage is the key to maintaining a stable operation of the power system. To this end, this paper proposes a robust optimization method for large-scale wind–solar storage systems considering hybrid storage multi-energy synergy. Firstly, the robust operation model of large-scale wind–solar storage systems considering hybrid energy storage is built. Secondly, the column constraint generation (CCG) algorithm is adopted to transform the original problem into a two-stage master problem and sub-problem for solving to obtain the optimal strategy of system operation with robustness. Finally, the validity of the proposed method is verified through case tests. The results show that the proposed method can effectively coordinate the multi-energy complementary and coordinated operation of multiple hybrid energy storage, and the obtained operation strategy of large-scale wind–solar storage systems can well balance the economy and robustness of the system.

Suggested Citation

  • Bin Xiao & Zhenxin Gao & Huaiwu Peng & Kang Chen & Yang Li & Kun Liu, 2023. "Robust Optimization of Large-Scale Wind–Solar Storage Renewable Energy Systems Considering Hybrid Storage Multi-Energy Synergy," Sustainability, MDPI, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:243-:d:1308321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xiangxiang & Wu, Jiang & Xu, Zhanbo & Liu, Kun & Guan, Xiaohong, 2022. "Optimal coordination of hydrogen-based integrated energy systems with combination of hydrogen and water storage," Applied Energy, Elsevier, vol. 308(C).
    2. Shaima A. Alnaqbi & Shamma Alasad & Haya Aljaghoub & Abdul Hai Alami & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2022. "Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa," Energies, MDPI, vol. 15(7), pages 1-27, March.
    3. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    4. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Zhentong & Cao, Xiaoyu & Zhai, Qiaozhu & Guan, Xiaohong, 2023. "Risk-constrained planning of rural-area hydrogen-based microgrid considering multiscale and multi-energy storage systems," Applied Energy, Elsevier, vol. 334(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    4. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    5. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    6. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    7. Ashraf Farahat & Abdulhaleem H. Labban & Abdul-Wahab S. Mashat & Hosny M. Hasanean & Harry D. Kambezidis, 2024. "Status of Solar-Energy Adoption in GCC, Yemen, Iraq, and Jordan: Challenges and Carbon-Footprint Analysis," Clean Technol., MDPI, vol. 6(2), pages 1-32, June.
    8. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    9. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    10. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    11. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    12. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    14. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    15. Murugaperumal Krishnamoorthy & P. Ajay-D-Vimal Raj & N. P. Subramaniam & M. Sudhakaran & Arulselvi Ramasamy, 2023. "Design and Development of Optimal and Deep-Learning-Based Demand Response Technologies for Residential Hybrid Renewable Energy Management System," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    16. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Chen, Mengxiao & Cao, Xiaoyu & Zhang, Zitong & Yang, Lun & Ma, Donglai & Li, Miaomiao, 2024. "Risk-averse stochastic scheduling of hydrogen-based flexible loads under 100% renewable energy scenario," Applied Energy, Elsevier, vol. 370(C).
    18. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    19. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    20. Zeyad A. Almutairi & Ali M. Eltamaly, 2024. "Synergistic Effects of Energy Storage Systems and Demand-Side Management in Optimizing Zero-Carbon Smart Grid Systems," Energies, MDPI, vol. 17(22), pages 1-32, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:243-:d:1308321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.