IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7695-d1141672.html
   My bibliography  Save this article

Towards Energy Sustainability in University Campuses: A Case Study of Beirut Arab University

Author

Listed:
  • Mohamad Tarnini

    (ECE Department, Faculty of Engineering, Beirut Arab University, Beirut 11-5020, Lebanon)

  • Mohammad Alsayed

    (ECE Department, Faculty of Engineering, Beirut Arab University, Beirut 11-5020, Lebanon)

  • Abdallah El Ghaly

    (ECE Department, Faculty of Engineering, Beirut Arab University, Beirut 11-5020, Lebanon)

  • Khaled Chahine

    (College of Engineering and Technology, American University of the Middle East, Kuwait)

Abstract

Lebanon has been suffering from severe challenges in its electric sector for decades owing to chronic supply shortages and faults in its aging power grid infrastructure. The deplorable situation of the Lebanese electric sector has been made worse by the economic meltdown that started in 2019, which eventually led to total power blackouts across the country. In this paper, we present a case study on the design and implementation of a solar microgrid system for Beirut Arab University, Lebanon. As a first step, simulation software for a microgrid and a distributed generation power system is used to compare different design scenarios. Considering the available installation area and the fact that the greatest demand occurs during the daytime, when both the educational and managerial facilities are running, it is found that a 500-kW photovoltaic system tied to the university’s already present diesel generators is the optimal solution in terms of return on investment. The second step details the actual implementation of the system in the Beirut campus and the evaluation of the system’s performance in terms of diesel cost savings and emissions reduction. We expect that the results of this case study will encourage other institutions and communities to adopt sustainable and renewable energy sources.

Suggested Citation

  • Mohamad Tarnini & Mohammad Alsayed & Abdallah El Ghaly & Khaled Chahine, 2023. "Towards Energy Sustainability in University Campuses: A Case Study of Beirut Arab University," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7695-:d:1141672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tully, Stephen, 2006. "The Human Right to Access Electricity," The Electricity Journal, Elsevier, vol. 19(3), pages 30-39, April.
    2. Tae Yong Jung & Donghun Kim & Jongwoo Moon & SeoKyung Lim, 2018. "A Scenario Analysis of Solar Photovoltaic Grid Parity in the Maldives: The Case of Malahini Resort," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Bodziacki & Mateusz Malinowski & Stanisław Famielec & Anna Krakowiak-Bal & Zuzanna Basak & Maria Łukasiewicz & Katarzyna Wolny-Koładka & Atılgan Atılgan & Ozan Artun, 2024. "Environmental Assessment of Energy System Upgrades in Public Buildings," Energies, MDPI, vol. 17(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    2. Jai Vipra & Anton Korinek, 2023. "Market Concentration Implications of Foundation Models," Papers 2311.01550, arXiv.org.
    3. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    4. Simone Pront-van Bommel, 2016. "A Reasonable Price for Electricity," Journal of Consumer Policy, Springer, vol. 39(2), pages 141-158, June.
    5. Komarov, Vladimir (Комаров, Владимир) & Kotsyubinskiy, Vladimir (Коцюбинский, Владимир), 2016. "The Implementation of the Concept of Sustainable Development in Russia [Реализация Концепции Устойчивого Развития В России]," Working Papers 1034, Russian Presidential Academy of National Economy and Public Administration.
    6. Simshauser, Paul, 2018. "Price discrimination and the modes of failure in deregulated retail electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 54-70.
    7. Simshauser, Paul & Whish-Wilson, Patrick, 2017. "Price discrimination in Australia's retail electricity markets: An analysis of Victoria & Southeast Queensland," Energy Economics, Elsevier, vol. 62(C), pages 92-103.
    8. Waldemar Tarczyński & Kinga Flaga-Gieruszyńska, 2022. "Civil and Procedural Instruments of the Consumer Protection on the Retail Electricity Market—Original Polish Model," Energies, MDPI, vol. 15(4), pages 1-22, February.
    9. Purohit, Pallav, 2009. "CO2 emissions mitigation potential of solar home systems under clean development mechanism in India," Energy, Elsevier, vol. 34(8), pages 1014-1023.
    10. Fuentes, Rolando & Blazquez, Jorge & Adjali, Iqbal, 2019. "From vertical to horizontal unbundling: A downstream electricity reliability insurance business model," Energy Policy, Elsevier, vol. 129(C), pages 796-804.
    11. Paul Simshauser, 2022. "The 2022 energy crisis: horizontal and vertical impacts of policy interventions in Australia's national electricity market," Working Papers EPRG2216, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Mouton, Morgan, 2015. "The Philippine electricity sector reform and the urban question: How metro Manila's utility is tackling urban poverty," Energy Policy, Elsevier, vol. 78(C), pages 225-234.
    13. Lorafe Lozano & Edward M. Querikiol & Evelyn B. Taboada, 2021. "The Viability of Providing 24-Hour Electricity Access to Off-Grid Island Communities in the Philippines," Energies, MDPI, vol. 14(20), pages 1-18, October.
    14. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2019. "Selection of a Hybrid Renewable Energy Systems for a Low-Income Household," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    15. Naeem Ur Rehman, Khattak & Tariq, Muhammad & Khan, Jangraiz, 2010. "Determinants of Household’s Demand for Electricity in District Peshawar," MPRA Paper 56007, University Library of Munich, Germany, revised 2010.
    16. Hongyang He & Zhigang Lu & Xiaoqiang Guo & Changli Shi & Dongqiang Jia & Chao Chen & Josep M. Guerrero, 2022. "Optimized Control Strategy for Photovoltaic Hydrogen Generation System with Particle Swarm Algorithm," Energies, MDPI, vol. 15(4), pages 1-17, February.
    17. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    18. Farthing, Amanda & Rosenlieb, Evan & Steward, Darlene & Reber, Tim & Njobvu, Clement & Moyo, Chrispin, 2023. "Quantifying agricultural productive use of energy load in Sub-Saharan Africa and its impact on microgrid configurations and costs," Applied Energy, Elsevier, vol. 343(C).
    19. Simshauser, P., 2023. "Fuel poverty in Queensland: horizontal and vertical impacts of the 2022 energy crisis," Cambridge Working Papers in Economics 2257, Faculty of Economics, University of Cambridge.
    20. Costa, Vinicius B.F. & Capaz, Rafael S. & Bonatto, Benedito D., 2023. "Small steps towards energy poverty mitigation: Life cycle assessment and economic feasibility analysis of a photovoltaic and battery system in a Brazilian indigenous community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7695-:d:1141672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.