Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pan Sheng & Jingbo Yin, 2018. "Extracting Shipping Route Patterns by Trajectory Clustering Model Based on Automatic Identification System Data," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
- Truong Ngoc Cuong & Sam-Sang You & Le Ngoc Bao Long & Hwan-Seong Kim, 2022. "Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
- Xinqiang Chen & Jun Ling & Yongsheng Yang & Hailin Zheng & Pengwen Xiong & Octavian Postolache & Yong Xiong, 2020. "Ship Trajectory Reconstruction from AIS Sensory Data via Data Quality Control and Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xuyang Han & Costas Armenakis & Mojgan Jadidi, 2021. "Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
- Fuentes, Gabriel, 2021. "Generating bunkering statistics from AIS data: A machine learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
- Andreas Komninos & Charalampos Kostopoulos & John Garofalakis, 2022. "Automatic generation of sailing holiday itineraries using vessel density data and semantic technologies," Information Technology & Tourism, Springer, vol. 24(2), pages 265-298, June.
- Carlos Pais-Montes & Jean-Claude Thill & David Guerrero, 2024. "Identification of shipping schedule cancellations with AIS data: an application to the Europe-Far East route before and during the COVID-19 pandemic," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 490-508, September.
- Pegado-Bardayo, Ana & Lorenzo-Espejo, Antonio & Muñuzuri, Jesús & Aparicio-Ruiz, Pablo, 2023. "A data-driven decision support system for service completion prediction in last mile logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
- Li, Huanhuan & Jiao, Hang & Yang, Zaili, 2023. "AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
More about this item
Keywords
trajectory prediction; AIS data; feature extraction; attention mechanism; neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7435-:d:1137422. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.