IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6751-d1125400.html
   My bibliography  Save this article

A State of Review on Instigating Resources and Technological Sustainable Approaches in Green Construction

Author

Listed:
  • Dhanasingh Sivalinga Vijayan

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology-Vinayaka Mission Research Foundation, Paiyanoor 603104, India)

  • Parthiban Devarajan

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology-Vinayaka Mission Research Foundation, Paiyanoor 603104, India)

  • Arvindan Sivasuriyan

    (Department of Civil Engineering, Aarupadai Veedu Institute of Technology-Vinayaka Mission Research Foundation, Paiyanoor 603104, India)

  • Anna Stefańska

    (Institute of Civil Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
    BSTS Lab, Building Science, Technology and Sustainability Laboratory, Rua Sá Nogueira, Polo Universitário do Alto da Ajuda, 1349-063 Lisboa, Portugal)

  • Eugeniusz Koda

    (Institute of Civil Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Aleksandra Jakimiuk

    (Institute of Civil Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Magdalena Daria Vaverková

    (Institute of Civil Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
    Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

  • Jan Winkler

    (Department of Plan Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

  • Carlos C. Duarte

    (BSTS Lab, Building Science, Technology and Sustainability Laboratory, Rua Sá Nogueira, Polo Universitário do Alto da Ajuda, 1349-063 Lisboa, Portugal
    CIAUD, Research Centre for Architecture, Urbanism and Design, Department of Technology in Architecture, Urbanism and Design, Lisbon School of Architecture, Universidade de Lisboa, Rua Sá Nogueira, Polo Universitário do Alto da Ajuda, 1349-063 Lisboa, Portugal)

  • Nuno D. Corticos

    (BSTS Lab, Building Science, Technology and Sustainability Laboratory, Rua Sá Nogueira, Polo Universitário do Alto da Ajuda, 1349-063 Lisboa, Portugal
    CIAUD, Research Centre for Architecture, Urbanism and Design, Department of Technology in Architecture, Urbanism and Design, Lisbon School of Architecture, Universidade de Lisboa, Rua Sá Nogueira, Polo Universitário do Alto da Ajuda, 1349-063 Lisboa, Portugal)

Abstract

Green building is a way to reduce the impact of the building stock on the environment, society, and economy. Despite the significance of a systematic review for the upcoming project, few studies have been conducted. Studies within the eco-friendly construction scope have been boosted in the past few decades. The present review study intends to critically analyse the available literature on green buildings by identifying the prevalent research approaches and themes. Among these recurring issues are the definition and scope of green buildings, the quantification of green buildings’ advantages over conventional ones, and several green building production strategies. The study concludes that the available research focuses mainly on the environmental side of green buildings. In contrast, other crucial points of green building sustainability, such as social impacts, are often neglected. Future research objectives include the effects of climate on the effectiveness of green building assessment methods; verification of the actual performance of green buildings; specific demographic requirements; and future-proofing.

Suggested Citation

  • Dhanasingh Sivalinga Vijayan & Parthiban Devarajan & Arvindan Sivasuriyan & Anna Stefańska & Eugeniusz Koda & Aleksandra Jakimiuk & Magdalena Daria Vaverková & Jan Winkler & Carlos C. Duarte & Nuno D., 2023. "A State of Review on Instigating Resources and Technological Sustainable Approaches in Green Construction," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6751-:d:1125400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alireza Tabrizikahou & Piotr Nowotarski, 2021. "Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes," Energies, MDPI, vol. 14(11), pages 1-20, June.
    2. Gabriela Rutkowska & Marek Chalecki & Mariusz Żółtowski, 2021. "Fly Ash from Thermal Conversion of Sludge as a Cement Substitute in Concrete Manufacturing," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    3. Kinga Rybak-Niedziółka & Agnieszka Starzyk & Przemysław Łacek & Łukasz Mazur & Izabela Myszka & Anna Stefańska & Małgorzata Kurcjusz & Aleksandra Nowysz & Karol Langie, 2023. "Use of Waste Building Materials in Architecture and Urban Planning—A Review of Selected Examples," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    4. Marzena Smol & Paulina Marcinek & Eugeniusz Koda, 2021. "Drivers and Barriers for a Circular Economy (CE) Implementation in Poland—A Case Study of Raw Materials Recovery Sector," Energies, MDPI, vol. 14(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaofeng Liang & Xinqian Le & Weijiong Fang & Jianming Zhao & Liuji Fang & Shaodan Hou, 2022. "The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    2. Hassan Bazazzadeh & Barbara Świt-Jankowska & Nasim Fazeli & Adam Nadolny & Behnaz Safar ali najar & Seyedeh sara Hashemi safaei & Mohammadjavad Mahdavinejad, 2021. "Efficient Shading Device as an Important Part of Daylightophil Architecture; a Designerly Framework of High-Performance Architecture for an Office Building in Tehran," Energies, MDPI, vol. 14(24), pages 1-26, December.
    3. Gilbert Silvius & Aydan Ismayilova & Vicente Sales-Vivó & Micol Costi, 2021. "Exploring Barriers for Circularity in the EU Furniture Industry," Sustainability, MDPI, vol. 13(19), pages 1-25, October.
    4. Zhaocheng Li & Yu Song, 2022. "Energy Consumption Linkages of the Chinese Construction Sector," Energies, MDPI, vol. 15(5), pages 1-13, February.
    5. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    6. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    7. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    8. Hassan Bazazzadeh & Peiman Pilechiha & Adam Nadolny & Mohammadjavad Mahdavinejad & Seyedeh sara Hashemi safaei, 2021. "The Impact Assessment of Climate Change on Building Energy Consumption in Poland," Energies, MDPI, vol. 14(14), pages 1-17, July.
    9. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Jarosław Siwiński, 2022. "The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    10. Qiurui Liu & Juntian Huang & Ting Ni & Lin Chen, 2022. "Measurement of China’s Building Energy Consumption from the Perspective of a Comprehensive Modified Life Cycle Assessment Statistics Method," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    11. Łukasz Mazur & Anatolii Olenchuk, 2023. "Life Cycle Assessment and Building Information Modeling Integrated Approach: Carbon Footprint of Masonry and Timber-Frame Constructions in Single-Family Houses," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    12. Aleksandra Kuzior & Olena Arefieva & Zarina Poberezhna & Oleksiy Ihumentsev, 2022. "The Mechanism of Forming the Strategic Potential of an Enterprise in a Circular Economy," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    13. Damian Mazurek & Konrad Czapiewski, 2021. "What Solutions for Waste Management? Issues of Flows and Governance Exemplified by the Łódź Agglomeration (Poland)," Energies, MDPI, vol. 14(12), pages 1-22, June.
    14. Joanna Bąk, 2023. "The Use of Precipitation in the Cities of the Future—Problems, Barriers and Challenges," Sustainability, MDPI, vol. 15(19), pages 1-25, September.
    15. Anna Podlasek & Aleksandra Jakimiuk & Magdalena Daria Vaverková & Eugeniusz Koda, 2021. "Monitoring and Assessment of Groundwater Quality at Landfill Sites: Selected Case Studies of Poland and the Czech Republic," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    16. Ioana Andreea Bogoslov & Anca Elena Lungu & Eduard Alexandru Stoica & Mircea Radu Georgescu, 2022. "European Green Deal Impact on Entrepreneurship and Competition: A Free Market Approach," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    17. Yuliia Trach & Victor Melnychuk & Oleksandr Stadnyk & Roman Trach & Filip Bujakowski & Agnieszka Kiersnowska & Gabriela Rutkowska & Leonid Skakun & Jacek Szer & Eugeniusz Koda, 2023. "The Possibility of Implementation of West Ukrainian Paleogene Glauconite–Quartz Sands in the Building Industry: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    18. Łukasz Mazur & Anna Bać & Magdalena Daria Vaverková & Jan Winkler & Aleksandra Nowysz & Eugeniusz Koda, 2022. "Evaluation of the Quality of the Housing Environment Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review," Energies, MDPI, vol. 15(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6751-:d:1125400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.