IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4432-d789490.html
   My bibliography  Save this article

The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review

Author

Listed:
  • Chaofeng Liang

    (School of Civil Engineering, Shaoxing University, Shaoxing 312010, China)

  • Xinqian Le

    (School of Civil Engineering, Shaoxing University, Shaoxing 312010, China)

  • Weijiong Fang

    (Shaoxing City Investment Group Co., Ltd., Shaoxing 312000, China)

  • Jianming Zhao

    (Shaoxing City Investment Recycled Resources Co., Ltd., Shaoxing 312000, China)

  • Liuji Fang

    (School of Civil Engineering, Shaoxing University, Shaoxing 312010, China)

  • Shaodan Hou

    (School of Civil Engineering, Shaoxing University, Shaoxing 312010, China)

Abstract

The output of sewage sludge has been increasing in recent years in China. Traditional treatment methods, such as incineration and landfilling, cannot meet the requirement of sustainability in various industries. As one of the efficient recycling methods for sewage sludge, previous studies have proven that sewage sludge ash (SSA) can be used as a supplementary cementitious material to partly replace cement in mortar or concrete. To understand the performance of SSA comprehensively, which contributes to its better utilization, this study reviews the basic properties of SSA and the effect of SSA on the performance of mortar. Firstly, the basic properties of SSA, such as chemical composition, heavy metal content, activity, and microstructure, are investigated. Then, the effects of SSA on the workability, setting time, and mechanical properties of mortar are reviewed. The results show that the particle size distribution of SSA is in the range of 2.5–250 μm. SSA contains active oxides such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , and CaO, which are similar to fly ash, indicating that SSA has potential pozzolanic properties. The leaching concentration of SSA is much lower than the required values in the relevant specifications, leading to an allowable environment influence. The incorporation of SSA has a negative impact on the workability, setting time, water absorption, compressive strength, and flexural strength of the mortar. The 90-day compressive strength of the SSA mortar is 71.72–98.6% of the cement mortar, when the replacement ratio of SSA is in the range of 10–30%. However, performance can be improved by increasing the grinding time or adding an admixture. The drying shrinkage and capillary water absorption of SSA mortar are higher than those of normal mortar, which is mainly related to an increase of porosity. In conclusion, it is proven that SSA can be used to partly replace cement in mortar with appropriate properties. Source and production process have a great influence on the basic properties of SSA, leading to varied, even opposite, effects on the mechanical properties and durability of mortar. In the future, the selected raw materials and a standard preparation method should be proposed for promoting the application of SSA.

Suggested Citation

  • Chaofeng Liang & Xinqian Le & Weijiong Fang & Jianming Zhao & Liuji Fang & Shaodan Hou, 2022. "The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4432-:d:789490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriela Rutkowska & Marek Chalecki & Mariusz Żółtowski, 2021. "Fly Ash from Thermal Conversion of Sludge as a Cement Substitute in Concrete Manufacturing," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    2. Rafiu O. Yusuf & Zainura Zainon Noor & Moh'd Fadhil Moh'd Din & Ahmad H. Abba, 2012. "Use of sewage sludge ash (SSA) in the production of cement and concrete - a review," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 12(2/3/4), pages 214-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaksada Thumrongvut & Sittichai Seangatith & Chayakrit Phetchuay & Cherdsak Suksiripattanapong, 2022. "Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    2. Faisal Amin & Safeer Abbas & Wasim Abbass & Abdelatif Salmi & Ali Ahmed & Danish Saeed & Muhammad Sufian & Mohamed Mahmoud Sayed, 2022. "Potential Use of Wastewater Treatment Plant Sludge in Fabrication of Burnt Clay Bricks," Sustainability, MDPI, vol. 14(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela Rutkowska & Marek Chalecki & Mariusz Żółtowski, 2021. "Fly Ash from Thermal Conversion of Sludge as a Cement Substitute in Concrete Manufacturing," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    2. Andelina Bubalo & Drazen Vouk & Nina Stirmer & Karlo Nad, 2021. "Use of Sewage Sludge Ash in the Production of Innovative Bricks—An Example of a Circular Economy," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    3. Krzysztof Wiśniewski & Gabriela Rutkowska & Katarzyna Jeleniewicz & Norbert Dąbkowski & Jarosław Wójt & Marek Chalecki & Jarosław Siwiński, 2022. "The Impact of Fly Ashes from Thermal Conversion of Sewage Sludge on Properties of Natural Building Materials on the Example of Clay," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    4. Dhanasingh Sivalinga Vijayan & Parthiban Devarajan & Arvindan Sivasuriyan & Anna Stefańska & Eugeniusz Koda & Aleksandra Jakimiuk & Magdalena Daria Vaverková & Jan Winkler & Carlos C. Duarte & Nuno D., 2023. "A State of Review on Instigating Resources and Technological Sustainable Approaches in Green Construction," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    5. Carmen Otilia Rusănescu & Gheorghe Voicu & Gigel Paraschiv & Mihaela Begea & Larisa Purdea & Ivona Camelia Petre & Elena Valentina Stoian, 2022. "Recovery of Sewage Sludge in the Cement Industry," Energies, MDPI, vol. 15(7), pages 1-10, April.
    6. Mohammad Ali Mosaberpanah & Stephen Babajide Olabimtan & Ayse Pekrioglu Balkis & Balikis Omotola Rabiu & Babatunde Olufunso Oluwole & Chibueze Sylvester Ajuonuma, 2024. "Effect of Biochar and Sewage Sludge Ash as Partial Replacement for Cement in Cementitious Composites: Mechanical, and Durability Properties," Sustainability, MDPI, vol. 16(4), pages 1-29, February.
    7. Yuliia Trach & Victor Melnychuk & Oleksandr Stadnyk & Roman Trach & Filip Bujakowski & Agnieszka Kiersnowska & Gabriela Rutkowska & Leonid Skakun & Jacek Szer & Eugeniusz Koda, 2023. "The Possibility of Implementation of West Ukrainian Paleogene Glauconite–Quartz Sands in the Building Industry: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    8. Łukasz Mazur & Anna Bać & Magdalena Daria Vaverková & Jan Winkler & Aleksandra Nowysz & Eugeniusz Koda, 2022. "Evaluation of the Quality of the Housing Environment Using Multi-Criteria Analysis That Includes Energy Efficiency: A Review," Energies, MDPI, vol. 15(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4432-:d:789490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.