IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5907-d1110211.html
   My bibliography  Save this article

Assessment of Meteorological and Agricultural Drought Indices under Climate Change Scenarios in the South Saskatchewan River Basin, Canada

Author

Listed:
  • Mohammad Zare

    (Prairie Adaptations Research Collaborative, University of Regina, Regina, SK S4S 0A2, Canada)

  • Shahid Azam

    (Environmental Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada)

  • David Sauchyn

    (Prairie Adaptations Research Collaborative, University of Regina, Regina, SK S4S 0A2, Canada)

  • Soumik Basu

    (Prairie Adaptations Research Collaborative, University of Regina, Regina, SK S4S 0A2, Canada
    International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA)

Abstract

Climate change has amplified the severity of droughts with potentially adverse impacts on agriculture in western Canada. This study assessed meteorological and agricultural drought in the Southern Saskatchewan River Basin (SSRB) using an array of drought indices, including the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), the Self-Calibrated Palmer Drought Severity Index (scPDSI), the Soil Moisture Deficit Index (SMDI), and the Evapotranspiration Deficit Index (ETDI). These indices were evaluated using multiple regional climate model (RCM) projections assuming 1.5, 2.0, and 3.0 °C thresholds of global warming. A modified Soil and Water Assessment Tool (SWAT-M) was used to simulate the soil water content (SWC), actual evapotranspiration (AET), and potential evapotranspiration. The results of a sensitivity analysis using the SUFI-2 method in SWAT-CUP showed that the model performed well with BIAS lower than 10% and NSE and R higher than 0.7, and the range of SWC output closely matched the observed SWC. According to the RCM projections, the annual precipitation increases for all three global temperature thresholds while the annual mean temperature increases at a greater rate than the rise in global mean temperature. The projected PDSI and the SPEI suggest that drought duration and severity will exceed historical values while SPI will remain largely unchanged. Furthermore, severe drought conditions (SMDI < 2.0) are more frequent under the 3.0 °C global temperature scenario. The mean ETDI was historically 0.58 while the projected value is 0.2, 0.1, and −0.2 for the first to third scenarios, respectively. Simulated values, spatial maps, and heat maps of SMDI and ETDI illustrated that Canesm2.CRCM5 projects the driest conditions among all the RCMs. Agricultural drought indices, which incorporate SWC data, show more significant effects than meteorological drought indices. The increasing dryness will potentially impact agricultural crop production, particularly under the third scenario (3 °C) in the SSRB.

Suggested Citation

  • Mohammad Zare & Shahid Azam & David Sauchyn & Soumik Basu, 2023. "Assessment of Meteorological and Agricultural Drought Indices under Climate Change Scenarios in the South Saskatchewan River Basin, Canada," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5907-:d:1110211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Zare & Shahid Azam & David Sauchyn, 2022. "A Modified SWAT Model to Simulate Soil Water Content and Soil Temperature in Cold Regions: A Case Study of the South Saskatchewan River Basin in Canada," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    2. Shoma Tanzeeba & Thian Gan, 2012. "Potential impact of climate change on the water availability of South Saskatchewan River Basin," Climatic Change, Springer, vol. 112(2), pages 355-386, May.
    3. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis M. Kourtis & Harris Vangelis & Dimitris Tigkas & Anna Mamara & Ioannis Nalbantis & George Tsakiris & Vassilios A. Tsihrintzis, 2023. "Drought Assessment in Greece Using SPI and ERA5 Climate Reanalysis Data," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    2. Lixia Jiang & Junjie Han & Hongtao Cui & Zheng Chu & Shuling Li & Yining Zhang & Yanghui Ji & Qiujing Wang & Xiufen Li & Ping Wang, 2024. "Effect of Climate Change on Identification of Delayed Chilling Damage of Rice in China’s Cold Region," Agriculture, MDPI, vol. 14(9), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Muhammad Ajmal & Joo Heon Lee & Tae-Woong Kim, 2016. "Multivariate Drought Assessment Considering the Antecedent Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4221-4231, September.
    2. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    3. Lin Ye & Nancy Grimm, 2013. "Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest," Climatic Change, Springer, vol. 120(1), pages 419-431, September.
    4. Fawen Li & Huifeng Liu & Xu Chen & Dong Yu, 2019. "Trivariate Copula Based Evaluation Model of Water Accessibility," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3211-3225, July.
    5. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    6. Geng-Wei Liu & Chang-Lei Dai & Ze-Xuan Shao & Rui-Han Xiao & Hong-Cong Guo, 2024. "Assessment of Ecological Flow in Hulan River Basin Utilizing SWAT Model and Diverse Hydrological Approaches," Sustainability, MDPI, vol. 16(6), pages 1-26, March.
    7. Mohammad Zare & Shahid Azam & David Sauchyn, 2022. "A Modified SWAT Model to Simulate Soil Water Content and Soil Temperature in Cold Regions: A Case Study of the South Saskatchewan River Basin in Canada," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    8. Adil Dilawar & Baozhang Chen & Arfan Arshad & Lifeng Guo & Muhammad Irfan Ehsan & Yawar Hussain & Alphonse Kayiranga & Simon Measho & Huifang Zhang & Fei Wang & Xiaohong Sun & Mengyu Ge, 2021. "Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-28, June.
    9. Zahidul Islam & Thian Gan, 2015. "Future Irrigation Demand of South Saskatchewan River Basin under the Combined Impacts of Climate Change and El Niño Southern Oscillation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2091-2105, April.
    10. Ling Zhang & Zhuotong Nan & Wenjun Yu & Yingchun Ge, 2015. "Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4701-4717, October.
    11. Wei Shan & Yan Wang & Ying Guo & Chengcheng Zhang & Shuai Liu & Lisha Qiu, 2023. "Impacts of Climate Change on Permafrost and Hydrological Processes in Northeast China," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    12. Xiaolong Feng & Mingyue Liu & Xuexi Huo & Wanglin Ma, 2017. "What Motivates Farmers’ Adaptation to Climate Change? The Case of Apple Farmers of Shaanxi in China," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    13. Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
    14. Mohammad Zare & Shahid Azam & David Sauchyn, 2023. "Simulation of Climate Change Impacts on Crop Yield in the Saskatchewan Grain Belt Using an Improved SWAT Model," Agriculture, MDPI, vol. 13(11), pages 1-21, November.
    15. Yue Zhang & Kai Huang & Yajuan Yu & Tingting Hu & Jing Wei, 2015. "Impact of climate change and drought regime on water footprint of crop production: the case of Lake Dianchi Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 549-566, October.
    16. Jun Yin & Zhe Yuan & Ting Li, 2021. "The Spatial-Temporal Variation Characteristics of Natural Vegetation Drought in the Yangtze River Source Region, China," IJERPH, MDPI, vol. 18(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5907-:d:1110211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.