IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5793-d1108260.html
   My bibliography  Save this article

Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties

Author

Listed:
  • Wiem Sdiri

    (Research Unit of Analysis and Process Applied on the Environment—APAE UR17ES32, Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia 5121, Tunisia)

  • Huda S. AlSalem

    (Department of Chemistry, College of Science, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia)

  • Soha T. Al-Goul

    (Department of Chemistry, Rabigh College of Sciences & Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mona S. Binkadem

    (Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia)

  • Hedi Ben Mansour

    (Research Unit of Analysis and Process Applied on the Environment—APAE UR17ES32, Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia 5121, Tunisia)

Abstract

For assessing the effects of wastewater on soil physical and chemical properties, manual irrigation (MI) and surface drip irrigation (SDI) systems were investigated. The experiment was conducted over 12 months. Before and after the experiment, soil samples were collected from three depths (0–20 cm, 20–40 cm and 40–60 cm) for analysis. The obtained results indicated that wastewater application probably preserves soil quality by maintaining its pH-water values whatever the irrigation system used. This study suggested that nutrient input from wastewater promotes soil microbial activity and organic matter (OM) mineralization. In fact, at the soil depths of 0–20 cm and 20–40 cm, MI using treated wastewater (TWW) leads to decrease OM content. P input may justify treated wastewater fertilizing effect in the topsoil. Moreover, TWW fertilizing effect was demonstrated by increased potassium (K) amount in the two upper soil layers (0–20 cm and 20–40 cm) following SDI system. This last system may block metals (iron (Fe), copper (Cu), cobalt (Co) and selenium (Se)) translocation to plants and their accumulation in soil. In contrast, metal translocation was maintained by the MI system. The present data is encouraging to reuse TWW for agricultural purposes, especially for orchard irrigation.

Suggested Citation

  • Wiem Sdiri & Huda S. AlSalem & Soha T. Al-Goul & Mona S. Binkadem & Hedi Ben Mansour, 2023. "Assessing the Effects of Treated Wastewater Irrigation on Soil Physico-Chemical Properties," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5793-:d:1108260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sdiri, Wiem & Dabbou, Samia & Chehab, Hechmi & Selvaggini, Roberto & Servili, Maurizio & Di Bella, Giuseppa & Mansour, Hedi Ben, 2020. "Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation," Agricultural Water Management, Elsevier, vol. 236(C).
    2. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    3. Blum, Julius & Herpin, Uwe & Melfi, Adolpho José & Montes, Célia Regina, 2012. "Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil," Agricultural Water Management, Elsevier, vol. 115(C), pages 203-216.
    4. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    5. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan J. Espada & Rosalía Rodríguez & Andrea Delgado & Gemma Vicente & Luis Fernando Bautista, 2024. "Assessing Environmental Sustainability of Phytoremediation to Remove Copper from Contaminated Soils," Sustainability, MDPI, vol. 16(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    2. Bame, I.B. & Hughes, J.C. & Titshall, L.W. & Buckley, C.A., 2014. "The effect of irrigation with anaerobic baffled reactor effluent on nutrient availability, soil properties and maize growth," Agricultural Water Management, Elsevier, vol. 134(C), pages 50-59.
    3. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    4. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    5. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    6. Sousa, Adervan Fernandes & Weber, Olmar Baller & Crisostomo, Lindbergue Araújo & Escobar, Maria Eugenia Ortiz & de Oliveira, Teógenes Senna, 2017. "Changes in soil soluble salts and plant growth in a sandy soil irrigated with treated water from oil extraction," Agricultural Water Management, Elsevier, vol. 193(C), pages 13-21.
    7. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    8. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Tekaya, Meriem & Mechri, Beligh & Dabbaghi, Olfa & Mahjoub, Zoubeir & Laamari, Salwa & Chihaoui, Badreddine & Boujnah, Dalenda & Hammami, Mohamed & Chehab, Hechmi, 2016. "Changes in key photosynthetic parameters of olive trees following soil tillage and wastewater irrigation, modified olive oil quality," Agricultural Water Management, Elsevier, vol. 178(C), pages 180-188.
    10. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    11. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    12. Savchenko, Olesya M. & Kecinski, Maik & Li, Tongzhe & Messer, Kent D. & Xu, Huidong, 2018. "Fresh foods irrigated with recycled water: A framed field experiment on consumer responses," Food Policy, Elsevier, vol. 80(C), pages 103-112.
    13. Ailin Zhang & Veronica Cortes & Bradley Phelps & Hal Van Ryswyk & Tanja Srebotnjak, 2018. "Experimental Analysis of Soil and Mandarin Orange Plants Treated with Heavy Metals Found in Oilfield-Produced Wastewater," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    14. Papadaskalopoulou, C. & Katsou, E. & Valta, K. & Moustakas, K. & Malamis, D. & Dodou, M., 2015. "Review and assessment of the adaptive capacity of the water sector in Cyprus against climate change impacts on water availability," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 95-112.
    15. Yusaf, Talal & Al-Juboori, Raed A., 2014. "Alternative methods of microorganism disruption for agricultural applications," Applied Energy, Elsevier, vol. 114(C), pages 909-923.
    16. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.
    17. Barbera, Antonio Carlo & Leonardi, Giovanni & Ferrante, Margherita & Zuccarello, Pietro & Maucieri, Carmelo, 2020. "Effects of pharmaceuticals (Caffeine and Ibuprofen) and AMF inoculation on the growth and yield of Oryza sativa L," Agricultural Water Management, Elsevier, vol. 232(C).
    18. Farahat, Emad & Linderholm, Hans W., 2015. "Nutrient resorption efficiency and proficiency in economic wood trees irrigated by treated wastewater in desert planted forests," Agricultural Water Management, Elsevier, vol. 155(C), pages 67-75.
    19. Meredith Frances Dobbie & Rebekah Ruth Brown, 2014. "A Framework for Understanding Risk Perception, Explored from the Perspective of the Water Practitioner," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 294-308, February.
    20. Deepak Singh & Neelam Patel & Agossou Gadedjisso-Tossou & Sridhar Patra & Nisha Singh & Pushpendra Kumar Singh, 2020. "Incidence of Escherichia coli in Vegetable Crops and Soil Profile Drip Irrigated with Primarily Treated Municipal Wastewater in a Semi-Arid Peri Urban Area," Agriculture, MDPI, vol. 10(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5793-:d:1108260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.