IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v73y2021ics0301420721002440.html
   My bibliography  Save this article

China's rare earth industry technological innovation structure and driving factors: A social network analysis based on patents

Author

Listed:
  • Leng, Zhihui
  • Sun, Han
  • Cheng, Jinhua
  • Wang, Hai
  • Yao, Zhen

Abstract

Based on patent information, the paper analyzes the technological comparative advantages from the perspective of industrial chain, and adopts the Social Network Analysis (SNA) method and knowledge production function model to explore technological innovation network structure of China's rare earth industry and its driving force. The results show that, overall, China's rare earth industry technological innovation ability has continued to increase in terms of the breadth and depth, and the industrial chain has shown the characteristics of “strong upper and weaker lower”. The network structure analysis show that the overall technical connection network tends to be close and stable, but it is still in a state of weak connection. In terms of individual networks, technologies represented by the development, extraction and smelting of rare earth resources constitute the core participants in the innovation network, and play the role of the power and control center of the technological innovation network. Further factors identification shows that China's innovation environment is the biggest driving force for technological innovation in the rare earth industry, followed by R&D investment and resource retention capacity. Additionally, the development of strategic emerging industries related to rare earths and resource production capacity have obvious lag effect on the technological innovation level.

Suggested Citation

  • Leng, Zhihui & Sun, Han & Cheng, Jinhua & Wang, Hai & Yao, Zhen, 2021. "China's rare earth industry technological innovation structure and driving factors: A social network analysis based on patents," Resources Policy, Elsevier, vol. 73(C).
  • Handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002440
    DOI: 10.1016/j.resourpol.2021.102233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721002440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Yuan, Xiaodong & Li, Xiaotao, 2021. "Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems," Energy, Elsevier, vol. 222(C).
    3. Keilhacker, Michael L. & Minner, Stefan, 2017. "Supply chain risk management for critical commodities: A system dynamics model for the case of the rare earth elements," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 349-362.
    4. Wübbeke, Jost, 2013. "Rare earth elements in China: Policies and narratives of reinventing an industry," Resources Policy, Elsevier, vol. 38(3), pages 384-394.
    5. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    6. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    7. Loet Leydesdorff, 2008. "Patent classifications as indicators of intellectual organization," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(10), pages 1582-1597, August.
    8. Jiskani, Izhar Mithal & Cai, Qingxiang & Zhou, Wei & Ali Shah, Syed Ahsan, 2021. "Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production," Resources Policy, Elsevier, vol. 71(C).
    9. ZHANG, Lu & GUO, Qing & ZHANG, Junbiao & HUANG, Yong & XIONG, Tao, 2015. "Did China׳s rare earth export policies work? — Empirical evidence from USA and Japan," Resources Policy, Elsevier, vol. 43(C), pages 82-90.
    10. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).
    11. Tsai, Yu-Ching & Huang, Yu-Fen & Yang, Jing-Tang, 2016. "Strategies for the development of offshore wind technology for far-east countries – A point of view from patent analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 182-194.
    12. Xuedong Liang & Meng Ye & Li Yang & Wanbing Fu & Zhi Li, 2018. "Evaluation and Policy Research on the Sustainable Development of China’s Rare Earth Resources," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    13. Khan, Zeeshan & Hussain, Muzzammil & Shahbaz, Muhammad & Yang, Siqun & Jiao, Zhilun, 2020. "Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China," Resources Policy, Elsevier, vol. 65(C).
    14. Bekkers, Rudi & Martinelli, Arianna, 2012. "Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators," Technological Forecasting and Social Change, Elsevier, vol. 79(7), pages 1192-1216.
    15. Aldieri, Luigi & Makkonen, Teemu & Paolo Vinci, Concetto, 2020. "Environmental knowledge spillovers and productivity: A patent analysis for large international firms in the energy, water and land resources fields," Resources Policy, Elsevier, vol. 69(C).
    16. Zhü, kèyù & Zhao, Shuang-yao & Yang, Shanlin & Liang, Changyong & Gu, Dongxiao, 2016. "Where is the way for rare earth industry of China: An analysis via ANP-SWOT approach," Resources Policy, Elsevier, vol. 49(C), pages 349-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Zhang & Ke Zhu & Jiaxuan Qu, 2024. "Intellectual Property Rights and Patented Knowledge: Implications for Financing Leases in the Clean Energy Sector of China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 12472-12502, September.
    2. Zhong, Meirui & Lu, Qiaolin & He, Ruifang, 2022. "The heterogeneous effects of industrial policy on technological innovation: Evidence from China's new metal material industry and micro-data," Resources Policy, Elsevier, vol. 79(C).
    3. Xiaoyi Shi & Xiaoxia Huang & Huifang Liu, 2022. "Research on the Structural Features and Influence Mechanism of the Low-Carbon Technology Cooperation Network Based on Temporal Exponential Random Graph Model," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Liudan Jiao & Dongrong Li & Yu Zhang & Yinghan Zhu & Xiaosen Huo & Ya Wu, 2021. "Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms," Land, MDPI, vol. 10(12), pages 1-21, November.
    5. Shuai, Jing & Peng, Xinjie & Zhao, Yujia & Wang, Yilan & Xu, Wei & Cheng, Jinhua & Lu, Yang & Wang, Jingjin, 2022. "A dynamic evaluation on the international competitiveness of China's rare earth products: An industrial chain and tech-innovation perspective," Resources Policy, Elsevier, vol. 75(C).
    6. Guo, Qing & You, Wenlan, 2023. "A comprehensive evaluation of the international competitiveness of strategic minerals in China, Australia, Russia and India: The case of rare earths," Resources Policy, Elsevier, vol. 85(PA).
    7. Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
    8. Huiping Wang & Qi Ge, 2022. "Analysis of the Spatial Association Network of PM 2.5 and Its Influencing Factors in China," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    9. Mengchao Yao & Ziqi Li & Yunfei Wang, 2023. "Features of Industrial Green Technology Innovation in the Yangtze River Economic Belt of China Based on Spatial Correlation Network," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    10. Huiping Wang & Peiling Liu, 2023. "Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    11. Guo, Qing & Wang, Yiling, 2024. "Rare earth trade dependence network structure and its impact on trade prices: An industry chain perspective," Resources Policy, Elsevier, vol. 91(C).
    12. Zhang, Hongwei & Wang, Xinyi & Tang, Jing & Guo, Yaoqi, 2022. "The impact of international rare earth trade competition on global value chain upgrading from the industrial chain perspective," Ecological Economics, Elsevier, vol. 198(C).
    13. Wang, Huiping & Liu, Peiling, 2023. "Spatial correlation network of renewable energy consumption and its influencing factors: Evidence from 31 Chinese provinces," Renewable Energy, Elsevier, vol. 217(C).
    14. Di, Jinghan & Wen, Zongguo & Jiang, Meihui & Miatto, Alessio, 2022. "Patterns and features of embodied environmental flow networks in the international trade of metal resources: A study of aluminum," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Lei & Xiao, Wen & Yan, Na, 2023. "International comparative research on the relevance of science and technology and the innovation ability of the rare earth industry-from the perspective of technology-industry mapping based on patent ," Resources Policy, Elsevier, vol. 80(C).
    2. Packey, Daniel J. & Kingsnorth, Dudley, 2016. "The impact of unregulated ionic clay rare earth mining in China," Resources Policy, Elsevier, vol. 48(C), pages 112-116.
    3. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    4. Shuai, Jing & Peng, Xinjie & Zhao, Yujia & Wang, Yilan & Xu, Wei & Cheng, Jinhua & Lu, Yang & Wang, Jingjin, 2022. "A dynamic evaluation on the international competitiveness of China's rare earth products: An industrial chain and tech-innovation perspective," Resources Policy, Elsevier, vol. 75(C).
    5. Cheng-Wen Lee & Budi Hasyim & Jan-Yan Lin, 2024. "Digital Technology for Supply Chain Management- marketing Integration," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 14(1), pages 1-4.
    6. Yang, Xiao & Anser, Muhammad Khalid & Yusop, Zulkornain & Abbas, Shujaat & Khan, Muhammad Azhar & Zaman, Khalid, 2022. "Volatility in mineral resource pricing causes ecological footprints: A cloud on the horizon," Resources Policy, Elsevier, vol. 77(C).
    7. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    8. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    9. Jeff Alstott & Giorgio Triulzi & Bowen Yan & Jianxi Luo, 2017. "Mapping technology space by normalizing patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 443-479, January.
    10. Takano, Yasutomo & Mejia, Cristian & Kajikawa, Yuya, 2016. "Unconnected component inclusion technique for patent network analysis: Case study of Internet of Things-related technologies," Journal of Informetrics, Elsevier, vol. 10(4), pages 967-980.
    11. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    12. Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
    13. Shi, Rubiao & Gao, Pengfei & Su, Xufeng & Zhang, Xi & Yang, Xiaodong, 2024. "Synergizing natural resources and sustainable development: A study of industrial structure, and green innovation in Chinese region," Resources Policy, Elsevier, vol. 88(C).
    14. Hiroko Nakamura & Shinji Suzuki & Yuya Kajikawa & Masataka Osawa, 2015. "The effect of patent family information in patent citation network analysis: a comparative case study in the drivetrain domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(2), pages 437-452, August.
    15. Shu-Hao Chang, 2018. "A pilot study on the connection between scientific fields and patent classification systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 951-970, March.
    16. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).
    17. Li, Hui & Usman, Nazar & Coulibay, Megnoro Hamed & Phiri, Ruth & Tang, Xiaoying, 2022. "Does the resources curse hypothesis exist in China? What is the dynamic role of fiscal decentralization, economic policy uncertainty, and technology innovation for sustainable financial development?," Resources Policy, Elsevier, vol. 79(C).
    18. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).
    19. Seiler, Volker, 2021. "China-to-FOB price transmission in the rare earth elements market and the end of Chinese export restrictions," Energy Economics, Elsevier, vol. 102(C).
    20. Zhao, Jun & Shahbaz, Muhammad & Dong, Kangyin, 2022. "How does energy poverty eradication promote green growth in China? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.