IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4387-d1084577.html
   My bibliography  Save this article

Single Score Environmental Performances of Roof Coverings

Author

Listed:
  • Ayşe Bayazıt Subaşı

    (Project and Construction Management, Department of Architecture, Istanbul Technical University, 34367 Istanbul, Turkey)

  • Elçin Filiz Taş

    (Project and Construction Management, Department of Architecture, Istanbul Technical University, 34367 Istanbul, Turkey)

Abstract

Buildings and constructions are responsible for a great amount of global energy and energy-related carbon dioxide emissions. Because of these negative impacts, there is an increase in Life cycle assessment research in the construction sector to measure these effects and evaluate the sustainability performances. Life cycle assessment is a tool that can facilitate the decision-making process in the construction sector for material selection, or for the selection of the best environmentally friendly option in the building component level or building level. In this study, a comparative life cycle assessment analysis is conducted among 12 roof coverings of 1 square meter in the 60-year lifetime of a building. Impact categories that are available in environmental product declarations and included in this study are the global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, abiotic depletion potential of non-fossils and abiotic depletion potential of fossils resources. To facilitate the decision-making process, panel and monetary weightings are applied to convert environmental product declaration data of seven impact categories into one single-score. Monetary weightings applied in the study are in Euro 2019 , differentiating itself from other comparative life cycle assessment studies. The single-score results are ranked and compared. R04 has the best performance for all panel weightings, while for monetary weightings, R03, R07 and R08 have the best performance for EPS, MMG and EVR, respectively. As a result, for 12 roof coverings, the weighted results could not address one single roof-covering material for numerous reasons. Among the weighting methods, panel weighting sets show more similarity in ranking results, while monetary-weighting sets results are more diverse.

Suggested Citation

  • Ayşe Bayazıt Subaşı & Elçin Filiz Taş, 2023. "Single Score Environmental Performances of Roof Coverings," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4387-:d:1084577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    2. Rosalie Arendt & Till M. Bachmann & Masaharu Motoshita & Vanessa Bach & Matthias Finkbeiner, 2020. "Comparison of Different Monetization Methods in LCA: A Review," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    3. Hongmei Gu & Shaobo Liang & Francesca Pierobon & Maureen Puettmann & Indroneil Ganguly & Cindy Chen & Rachel Pasternack & Mark Wishnie & Susan Jones & Ian Maples, 2021. "Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garkoti, Pankaj & Ni, Ji-Qin & Thengane, Sonal K., 2024. "Energy management for maintaining anaerobic digestion temperature in biogas plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Angstmann, Marius & Gärtner, Stefan & Angstmann, Marius, 2023. "Abriss, Neubau oder Sanierung - CO₂-Emissionen im Gebäudesektor: Nicht nur sparsamer, sondern auch weniger," Forschung Aktuell 09/2023, Institut Arbeit und Technik (IAT), Westfälische Hochschule, University of Applied Sciences.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahakn Kabakian & Marcelle McManus, 2024. "From private to social cost-benefit analysis: life cycle environmental impact cost internalization in cement production fuel switching," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25527-25548, October.
    2. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    3. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    4. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    5. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    6. Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Bell, David R. & Silalertruksa, Thapat & Gheewala, Shabbir H. & Kamens, Richard, 2011. "The net cost of biofuels in Thailand--An economic analysis," Energy Policy, Elsevier, vol. 39(2), pages 834-843, February.
    8. Ahlroth, Sofia, 2014. "The use of valuation and weighting sets in environmental impact assessment," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 34-41.
    9. Rosalie Arendt & Till M. Bachmann & Masaharu Motoshita & Vanessa Bach & Matthias Finkbeiner, 2020. "Comparison of Different Monetization Methods in LCA: A Review," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    10. Säll, Sarah & Gren, Ing-Marie, 2015. "Effects of an environmental tax on meat and dairy consumption in Sweden," Food Policy, Elsevier, vol. 55(C), pages 41-53.
    11. Jørgen Dejgård Jensen & Henrik Saxe & Sigrid Denver, 2015. "Cost-Effectiveness of a New Nordic Diet as a Strategy for Health Promotion," IJERPH, MDPI, vol. 12(7), pages 1-22, June.
    12. Cátia da Silva & Ana Paula Barbosa‐Póvoa & Ana Carvalho, 2022. "Towards sustainable development: Green supply chain design and planning using monetization methods," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1369-1394, May.
    13. S. Ferreira & M. Cabral & N.F. da Cruz & P. Simões & R.C. Marques, 2017. "The costs and benefits of packaging waste management systems in Europe: the perspective of local authorities," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(5), pages 773-791, May.
    14. Marcell Mariano Corrêa Maceno & Samuel João & Danielle Raphaela Voltolini & Izabel Cristina Zattar, 2023. "Life cycle assessment and circularity evaluation of the non-medical masks in the Covid-19 pandemic: a Brazilian case," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8055-8082, August.
    15. Nguyen, Thu Lan Thi & Laratte, Bertrand & Guillaume, Bertrand & Hua, Anthony, 2016. "Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 13-23.
    16. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    17. Henrik Saxe & Signe Loftager Okkels & Jørgen Dejgård Jensen, 2017. "How to Obtain Forty Percent Less Environmental Impact by Healthy, Protein-Optimized Snacks for Older Adults," IJERPH, MDPI, vol. 14(12), pages 1-21, December.
    18. Svetlana Zenchenko & Wadim Strielkowski & Luboš Smutka & Tomáš Vacek & Yana Radyukova & Vladislav Sutyagin, 2022. "Monetization of the Economies as a Priority of the New Monetary Policy in the Face of Economic Sanctions," JRFM, MDPI, vol. 15(3), pages 1-18, March.
    19. Marisa D.M. Vieira & Thomas C. Ponsioen & Mark J. Goedkoop & Mark A.J. Huijbregts, 2016. "Surplus Cost Potential as a Life Cycle Impact Indicator for Metal Extraction," Resources, MDPI, vol. 5(1), pages 1-12, January.
    20. Alberto Bezama & Nora Mittelstädt & Daniela Thrän & Fritz Balkau, 2021. "Trends and Challenges in Regional Life Cycle Management: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4387-:d:1084577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.