IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4257-d1082190.html
   My bibliography  Save this article

The Mechanism of Plugging Open-Pit Mine Cannon Holes and the Modification of Plugging Materials

Author

Listed:
  • Xiaohua Ding

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhongchen Ao

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaoshuang Li

    (School of Civil Engineering, Shaoxing University of Arts and Sciences, Shaoxing 312010, China)

  • Shuangshuang Xiao

    (School of Energy, Xi’an University of Science and Technology, Xi’an 710064, China)

  • Mao Wu

    (China Coal Pingshuo Group Co., Ltd., Shuozhou 036006, China)

  • Bokang Xing

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Ruhao Ge

    (School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Donghua Zhang

    (School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

Step blasting is an important part of open-pit mining, which is accompanied by hazards such as large blasting blocks, flying stone splashing, blasting noises, and blasting dust during the blasting process. In order to reduce the harm caused by blasting, this paper uses impact dynamics and rock dynamics to explain the deformation damage and motion law caused by detonation of the material blocked by the gun hole. By simulating the motion of the blocked material in the gun hole, the motion and failure characteristics of the blocked material in the gun hole are revealed. In this paper, geological polymer is introduced into the field of open-pit mine blasting, and 700 g rock powder, 200 g slag, 40 g NaOH solution (30%), and 140 g water glass with a modulus of 3.2 and 80 g of water are selected to prepare geological polymer-modified plugging materials to change rock powder blockage from bulk to solid, and improve the plugging performance. Finally, a field test was carried out in the open-pit mine explosion area, and a comparative test was carried out through the high-speed photography system; it is demonstrated that the modified blocking material could improve the blockage ability of the gun hole, reduce the large block rate of the upper part of the step, reduce the amount of dust, reduce the amount of flying stone, and improve the production efficiency and safety.

Suggested Citation

  • Xiaohua Ding & Zhongchen Ao & Xiaoshuang Li & Shuangshuang Xiao & Mao Wu & Bokang Xing & Ruhao Ge & Donghua Zhang, 2023. "The Mechanism of Plugging Open-Pit Mine Cannon Holes and the Modification of Plugging Materials," Sustainability, MDPI, vol. 15(5), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4257-:d:1082190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huaiting Luo & Wei Zhou & Izhar Mithal Jiskani & Zhiming Wang, 2021. "Analyzing Characteristics of Particulate Matter Pollution in Open-Pit Coal Mines: Implications for Green Mining," Energies, MDPI, vol. 14(9), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichao Liu & Zhongchen Ao & Wei Zhou & Baowei Zhang & Jingfu Niu & Zhiming Wang & Lijie Liu & Zexuan Yang & Kun Xu & Wenqi Lu & Lixia Zhu, 2023. "Research on the Physical and Chemical Characteristics of Dust in Open Pit Coal Mine Crushing Stations and Closed Dust Reduction Methods," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayaz, Muhammad & Jehan, Noor & Nakonieczny, Joanna & Mentel, Urszula & uz zaman, Qamar, 2022. "Health costs of environmental pollution faced by underground coal miners: Evidence from Balochistan, Pakistan," Resources Policy, Elsevier, vol. 76(C).
    2. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    3. Boyu Luan & Wei Zhou & Izhar Mithal Jiskani & Zhiming Wang, 2023. "An Improved Machine Learning Approach for Optimizing Dust Concentration Estimation in Open-Pit Mines," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    4. Hosseini, Shahab & Mousavi, Amin & Monjezi, Masoud & Khandelwal, Manoj, 2022. "Mine-to-crusher policy: Planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach," Resources Policy, Elsevier, vol. 79(C).
    5. Tadeusz Dziubak, 2022. "Experimental Investigation of Possibilities to Improve Filtration Efficiency of Tangential Inlet Return Cyclones by Modification of Their Design," Energies, MDPI, vol. 15(11), pages 1-37, May.
    6. Shuai Li & Lifeng Yu & Wanjun Jiang & Haoxuan Yu & Xinmin Wang, 2022. "The Recent Progress China Has Made in Green Mine Construction, Part I: Mining Groundwater Pollution and Sustainable Mining," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    7. Ryszard Staniszewski & Dorota Cais-Sokolińska & Łukasz K. Kaczyński & Paulina Bielska, 2021. "Use of Bioluminescence for Monitoring Brown Coal Mine Waters from Deep and Surface Drainage," Energies, MDPI, vol. 14(12), pages 1-10, June.
    8. Timofey Leshukov & Konstantin Legoshchin & Olga Yakovenko & Sebastian Bach & Dmitriy Russakov & Daria Dimakova & Evgeniya Vdovina & Elizaveta Baranova & Kirill Avdeev & Elena Kolpina & Karina Oshchepk, 2022. "Fractional Composition and Toxicity Coal–Rock of PM 10 -PM 0.1 Dust near an Opencast Coal Mining Area and Coal-Fired Power Station," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    9. Wang, Qian & Gu, Qinghua & Li, Xuexian & Xiong, Naixue, 2024. "Comprehensive overview: Fleet management drives green and climate-smart open pit mine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Tadeusz Dziubak, 2021. "Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter," Energies, MDPI, vol. 14(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4257-:d:1082190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.