IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i6p1832-1853.html
   My bibliography  Save this article

Multi-dimensional spatiotemporal demand forecasting and service vehicle dispatching for online car-hailing platforms

Author

Listed:
  • Yuhan Guo
  • Yu Zhang
  • Youssef Boulaksil
  • Ning Tian

Abstract

Forecasting transportation demands can aid online car-hailing platforms to dispatch their service vehicles in advance to areas with more potential orders. This results in a reduction in passengers’ waiting time and better utilisation of transportation resources. However, the complexity and dynamics of multi-dimensional influential factors make the forecasting and dispatching procedures challenging. This paper addresses these issues by using machine learning techniques and an effective probabilistic dispatching strategy. Multiple influential factors were identified in spatial, temporal, and meteorological dimensions, and effective machine learning algorithms were applied to predict the number of passenger orders. The fusion of the multi-dimensional features enables the proposed algorithms to better reveal the spatiotemporal characteristics and their correlations. A sensing-area-based strategy was introduced to dispatch available service vehicles to high demand-intensity regions efficiently with respect to the global demand-supply-balance and the individual probability of receiving orders. Finally, extensive experiments with large-scale real-world datasets were conducted to evaluate the performance of the machine learning algorithms and the effectiveness of the dispatching strategy. Overall, this paper extensively studies the forecasting of the spatiotemporal demand in multiple cities using point-of-interest data and the dispatching of available service vehicles based on such information for online car-hailing platforms.

Suggested Citation

  • Yuhan Guo & Yu Zhang & Youssef Boulaksil & Ning Tian, 2022. "Multi-dimensional spatiotemporal demand forecasting and service vehicle dispatching for online car-hailing platforms," International Journal of Production Research, Taylor & Francis Journals, vol. 60(6), pages 1832-1853, March.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:6:p:1832-1853
    DOI: 10.1080/00207543.2021.1871675
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2021.1871675
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2021.1871675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    2. Shuoben Bi & Cong Yuan & Shaoli Liu & Luye Wang & Lili Zhang, 2022. "Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network," Sustainability, MDPI, vol. 14(20), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:6:p:1832-1853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.