IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p231-d1012864.html
   My bibliography  Save this article

An Optimized Machine Learning Approach for Forecasting Thermal Energy Demand of Buildings

Author

Listed:
  • Samira Rastbod

    (Department of Architecture, Abhar Branch, Islamic Azad University, Abhar 4561934367, Iran)

  • Farnaz Rahimi

    (Department of Architecture, Eram Institute of Higher Education, Shiraz 7195746733, Iran)

  • Yara Dehghan

    (Faculty of Architecture and Urban Planning, Department of Architecture, Islamic Azad University of Central Tehran Branch, Tehran 1955847781, Iran)

  • Saeed Kamranfar

    (Department of Architecture, Built Environment and Construction Engineering, Polytechnic Milan, 20133 Milan, Italy)

  • Omrane Benjeddou

    (Civil Engineering Department, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi Arabia)

  • Moncef L. Nehdi

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

Abstract

Recent developments in indirect predictive methods have yielded promising solutions for energy consumption modeling. The present study proposes and evaluates a novel integrated methodology for estimating the annual thermal energy demand (D AN ), which is considered as an indicator of the heating and cooling loads of buildings. A multilayer perceptron (MLP) neural network is optimally trained by symbiotic organism search (SOS), which is among the strongest metaheuristic algorithms. Three benchmark algorithms, namely, political optimizer (PO), harmony search algorithm (HSA), and backtracking search algorithm (BSA) are likewise applied and compared with the SOS. The results indicate that (i) utilizing the properties of the building within an artificial intelligence framework gives a suitable prediction for the D AN indicator, (ii) with nearly 1% error and 99% correlation, the suggested MLP-SOS is capable of accurately learning and reproducing the nonlinear D AN pattern, and (iii) this model outperforms other models such as MLP-PO, MLP-HSA and MLP-BSA. The discovered solution is finally expressed in an explicit mathematical format for practical uses in the future.

Suggested Citation

  • Samira Rastbod & Farnaz Rahimi & Yara Dehghan & Saeed Kamranfar & Omrane Benjeddou & Moncef L. Nehdi, 2022. "An Optimized Machine Learning Approach for Forecasting Thermal Energy Demand of Buildings," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:231-:d:1012864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nadia Jahanafroozi & Saman Shokrpour & Fatemeh Nejati & Omrane Benjeddou & Mohammad Worya Khordehbinan & Afshin Marani & Moncef L. Nehdi, 2022. "New Heuristic Methods for Sustainable Energy Performance Analysis of HVAC Systems," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    2. Jinmog Han & Jongkyun Bae & Jihoon Jang & Jumi Baek & Seung-Bok Leigh, 2019. "The Derivation of Cooling Set-Point Temperature in an HVAC System, Considering Mean Radiant Temperature," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    3. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    4. Ikeda, Shintaro & Nagai, Tatsuo, 2021. "A novel optimization method combining metaheuristics and machine learning for daily optimal operations in building energy and storage systems," Applied Energy, Elsevier, vol. 289(C).
    5. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. David Bienvenido-Huertas & Miguel Oliveira & Carlos Rubio-Bellido & David Marín, 2019. "A Comparative Analysis of the International Regulation of Thermal Properties in Building Envelope," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    7. Han, Yongming & Fan, Chenyu & Geng, Zhiqiang & Ma, Bo & Cong, Di & Chen, Kai & Yu, Bin, 2020. "Energy efficient building envelope using novel RBF neural network integrated affinity propagation," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed Kamranfar & Farid Damirchi & Mitra Pourvaziri & Pardayev Abdunabi Xalikovich & Samira Mahmoudkelayeh & Reza Moezzi & Amir Vadiee, 2023. "A Partial Least Squares Structural Equation Modelling Analysis of the Primary Barriers to Sustainable Construction in Iran," Sustainability, MDPI, vol. 15(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    2. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    4. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    5. Arash Mohammadi Fallah & Ehsan Ghafourian & Ladan Shahzamani Sichani & Hossein Ghafourian & Behdad Arandian & Moncef L. Nehdi, 2023. "Novel Neural Network Optimized by Electrostatic Discharge Algorithm for Modification of Buildings Energy Performance," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    6. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    7. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    8. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    10. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    11. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    12. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    13. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    14. Yuchun Li & Yinghua Han & Jinkuan Wang & Qiang Zhao, 2018. "A MBCRF Algorithm Based on Ensemble Learning for Building Demand Response Considering the Thermal Comfort," Energies, MDPI, vol. 11(12), pages 1-20, December.
    15. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    16. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    17. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    18. Zhang, Weiyi & Zhou, Haiyang & Bao, Xiaohua & Cui, Hongzhi, 2023. "Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model," Energy, Elsevier, vol. 264(C).
    19. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    20. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:231-:d:1012864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.