Experimental Research on a Solar Energy Phase Change Heat Storage Heating System Applied in the Rural Area
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
- Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
- Lu, Shilei & Xu, Bowen & Tang, Xiaolei, 2020. "Experimental study on double pipe PCM floor heating system under different operation strategies," Renewable Energy, Elsevier, vol. 145(C), pages 1280-1291.
- Zhang, Zongxi & Zhou, Yuguang & Zhao, Nan & Li, Huan & Tohniyaz, Bahargul & Mperejekumana, Philbert & Hong, Quan & Wu, Rucong & Li, Gang & Sultan, Muhammad & Zayan, Ali Mohammed Ibrahim & Cao, Jinxin , 2021. "Clean heating during winter season in Northern China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
- Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
- Lu, Shilei & Zhai, Xue & Gao, Jingxian & Wang, Ran, 2022. "Performance optimization and experimental analysis of a novel low-temperature latent heat thermal energy storage device," Energy, Elsevier, vol. 239(PE).
- Imran Zahid & Muhammad Farooq & Muhammad Farhan & Muhammad Usman & Adnan Qamar & Muhammad Imran & Mejdal A. Alqahtani & Saqib Anwar & Muhammad Sultan & Muhammad Yasar Javaid, 2022. "Thermal Performance Analysis of Various Heat Sinks Based on Alumina NePCM for Passive Cooling of Electronic Components: An Experimental Study," Energies, MDPI, vol. 15(22), pages 1-16, November.
- Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
- Lu, Shilei & Gao, Jingxian & Tong, Haojie & Yin, Shuai & Tang, Xiaolei & Jiang, Xiangyang, 2020. "Model establishment and operation optimization of the casing PCM radiant floor heating system," Energy, Elsevier, vol. 193(C).
- Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
- Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
- Guan, Yong & Meng, Qi & Ji, Tianxu & Hu, Wanling & Li, Wenlong & Liu, Tianming, 2023. "Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse," Energy, Elsevier, vol. 264(C).
- Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
- Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
- Puupponen, Salla & Mikkola, Valtteri & Ala-Nissila, Tapio & Seppälä, Ari, 2016. "Novel microstructured polyol–polystyrene composites for seasonal heat storage," Applied Energy, Elsevier, vol. 172(C), pages 96-106.
- Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
- Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
- Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
- Ilze Polikarpova & Roberts Kakis & Ieva Pakere & Dagnija Blumberga, 2021. "Optimizing Large-Scale Solar Field Efficiency: Latvia Case Study," Energies, MDPI, vol. 14(14), pages 1-13, July.
- Chen, Shuqin & Zhu, Yipan & Chen, Yue & Liu, Wei, 2020. "Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate," Applied Energy, Elsevier, vol. 277(C).
- Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
- Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).
- Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
- Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
More about this item
Keywords
clean heating system; phase change materials; rural areas; solar heating; thermal energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2575-:d:1053105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.