IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2575-d1053105.html
   My bibliography  Save this article

Experimental Research on a Solar Energy Phase Change Heat Storage Heating System Applied in the Rural Area

Author

Listed:
  • Shilei Lv

    (School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
    Tianjin Key Laboratory of Built Environment and Energy Application, Tianjin University, Tianjin 300072, China)

  • Jiawen Zhu

    (School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
    Tianjin Key Laboratory of Built Environment and Energy Application, Tianjin University, Tianjin 300072, China)

  • Ran Wang

    (School of Environment Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
    Tianjin Key Laboratory of Built Environment and Energy Application, Tianjin University, Tianjin 300072, China)

Abstract

Thermal energy storage technology can effectively promote the clean heating policy in northern China. Therefore, phase-change heat storage heating technology has been widely studied, both theoretically and experimentally, but there is still a lack of engineering application research. According to the characteristics of heating load in northern rural areas, a kind of solar heating system using phase-change materials (PCMs) for heat storage is proposed. Furthermore, a farmhouse is used to demonstrate the practical engineering applications of the heating system. The heating system consists of the phase-change heat storage device (PCHSD), solar thermal panels, and a floor radiant heating terminal, which can realize the effective utilization of solar energy. Considering solar power generation capacity, heating load characteristics of farm buildings, and the local electricity price model, four potential operation modes of the heating system are established. Then, the corresponding control strategies are proposed for the four operating modes. The actual operation data of the heating system under different operating modes were collected continuously, and the application effect of the heating system was evaluated from the aspects of thermal efficiency of the device, the renewable energy efficiency, thermal comfort level, and economy. The experimental results show that: (1) The thermal efficiency of the device is mainly affected by the heating load, which can reach more than 80% during the test period; (2) the renewable energy efficiency of the system is positively correlated with the solar radiation intensity, and the maximum can reach 100% when the solar radiation is sufficient; (3) the system maintains excellent thermal comfort in all conditions, with the average and the highest thermal comfort time accounting for 80% and 100%, respectively; (4) compared with the average level of existing clean heating technology, the annual operating cost of the system is reduced by 27.3%, and the economy is significant. The results show that the system achieves effective performance during the test period.

Suggested Citation

  • Shilei Lv & Jiawen Zhu & Ran Wang, 2023. "Experimental Research on a Solar Energy Phase Change Heat Storage Heating System Applied in the Rural Area," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2575-:d:1053105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guan, Yong & Wang, Tuo & Tang, Rui & Hu, Wanling & Guo, Jianxuan & Yang, Huijun & Zhang, Yun & Duan, Shijian, 2020. "Numerical study on the heat release capacity of the active-passive phase change wall affected by ventilation velocity," Renewable Energy, Elsevier, vol. 150(C), pages 1047-1056.
    2. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    3. Lu, Shilei & Xu, Bowen & Tang, Xiaolei, 2020. "Experimental study on double pipe PCM floor heating system under different operation strategies," Renewable Energy, Elsevier, vol. 145(C), pages 1280-1291.
    4. Zhang, Zongxi & Zhou, Yuguang & Zhao, Nan & Li, Huan & Tohniyaz, Bahargul & Mperejekumana, Philbert & Hong, Quan & Wu, Rucong & Li, Gang & Sultan, Muhammad & Zayan, Ali Mohammed Ibrahim & Cao, Jinxin , 2021. "Clean heating during winter season in Northern China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Tschopp, Daniel & Tian, Zhiyong & Berberich, Magdalena & Fan, Jianhua & Perers, Bengt & Furbo, Simon, 2020. "Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria," Applied Energy, Elsevier, vol. 270(C).
    6. Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
    7. Lu, Shilei & Zhai, Xue & Gao, Jingxian & Wang, Ran, 2022. "Performance optimization and experimental analysis of a novel low-temperature latent heat thermal energy storage device," Energy, Elsevier, vol. 239(PE).
    8. Imran Zahid & Muhammad Farooq & Muhammad Farhan & Muhammad Usman & Adnan Qamar & Muhammad Imran & Mejdal A. Alqahtani & Saqib Anwar & Muhammad Sultan & Muhammad Yasar Javaid, 2022. "Thermal Performance Analysis of Various Heat Sinks Based on Alumina NePCM for Passive Cooling of Electronic Components: An Experimental Study," Energies, MDPI, vol. 15(22), pages 1-16, November.
    9. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    2. Lu, Shilei & Gao, Jingxian & Tong, Haojie & Yin, Shuai & Tang, Xiaolei & Jiang, Xiangyang, 2020. "Model establishment and operation optimization of the casing PCM radiant floor heating system," Energy, Elsevier, vol. 193(C).
    3. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
    4. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    5. Guan, Yong & Meng, Qi & Ji, Tianxu & Hu, Wanling & Li, Wenlong & Liu, Tianming, 2023. "Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse," Energy, Elsevier, vol. 264(C).
    6. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    7. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    8. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    9. Puupponen, Salla & Mikkola, Valtteri & Ala-Nissila, Tapio & Seppälä, Ari, 2016. "Novel microstructured polyol–polystyrene composites for seasonal heat storage," Applied Energy, Elsevier, vol. 172(C), pages 96-106.
    10. Grzegorz Czerwiński & Jerzy Wołoszyn, 2022. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency," Energies, MDPI, vol. 16(1), pages 1-24, December.
    11. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Kong, Xiangfei & Jiang, Lina & Yuan, Ye & Qiao, Xu, 2022. "Experimental study on the performance of an active novel vertical partition thermal storage wallboard based on composite phase change material with porous silica and microencapsulation," Energy, Elsevier, vol. 239(PE).
    13. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    14. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    15. Ilze Polikarpova & Roberts Kakis & Ieva Pakere & Dagnija Blumberga, 2021. "Optimizing Large-Scale Solar Field Efficiency: Latvia Case Study," Energies, MDPI, vol. 14(14), pages 1-13, July.
    16. Chen, Shuqin & Zhu, Yipan & Chen, Yue & Liu, Wei, 2020. "Usage strategy of phase change materials in plastic greenhouses, in hot summer and cold winter climate," Applied Energy, Elsevier, vol. 277(C).
    17. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    18. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).
    19. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    20. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2575-:d:1053105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.