IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1900-d1040728.html
   My bibliography  Save this article

Design of a Standard and Programmatically Accessible Interface for Smart Meters to Allow Monitoring Automation of the Energy Consumed by the Execution of Computer Software

Author

Listed:
  • Alberto Ortega

    (Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada, 18010 Granada, Spain)

  • Abel Miguel Cano-Delgado

    (Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada, 18010 Granada, Spain)

  • Beatriz Prieto

    (Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada, 18010 Granada, Spain)

  • Jesús González

    (Department of Computer Engineering, Automation and Robotics, CITIC, University of Granada, 18010 Granada, Spain)

Abstract

Software has become more computationally demanding nowadays, turning out high-performance software in many cases, implying higher energy and economic expenditure. Indeed, many studies have arisen within the IT community to mitigate the environmental impact of software. Collecting and measuring software’s power consumption has become an essential task. This paper proposes the design of a standard interface for any currently available smart meter, which is programmatically accessible from any software application and can collect consumption data transparently while a program is executed. This interface is structured into two layers. The former is a driver that provides an OS-level standard interface to the meter, while the latter is a proxy offering higher-level API for a concrete programming language. This design provides many benefits. It makes it possible to substitute the meter for a different device without affecting the proxy layer. It also allows the presence of multiple proxy implementations to offer a programmatic interface to the meter for several languages. A prototype of the proposed interface design has been implemented for a concrete smart meter and OS to demonstrate its feasibility. It has been tested with two experiments. Firstly, its correct functioning has been validated. Later, the prototype has been applied to monitor the execution of a high-performance program, a machine learning application to select the most relevant features of electroencephalogram data.

Suggested Citation

  • Alberto Ortega & Abel Miguel Cano-Delgado & Beatriz Prieto & Jesús González, 2023. "Design of a Standard and Programmatically Accessible Interface for Smart Meters to Allow Monitoring Automation of the Energy Consumed by the Execution of Computer Software," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1900-:d:1040728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Viciana & Alfredo Alcayde & Francisco G. Montoya & Raul Baños & Francisco M. Arrabal-Campos & Antonio Zapata-Sierra & Francisco Manzano-Agugliaro, 2018. "OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    2. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    3. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    4. Beatriz Prieto & Juan José Escobar & Juan Carlos Gómez-López & Antonio F. Díaz & Thomas Lampert, 2022. "Energy Efficiency of Personal Computers: A Comparative Analysis," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2020. "A Novel Statistical Learning-Based Methodology for Measuring the Goodness of Energy Profiles of Applications Executing on Multicore Computing Platforms," Energies, MDPI, vol. 13(15), pages 1-22, August.
    2. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
    3. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    4. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence?," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242369, Verein für Socialpolitik / German Economic Association.
    5. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    6. Wen Chen & Changyi Zhu & Qi Cheung & Siying Wu & Jun Zhang & Jia Cao, 2024. "How does digitization enable green innovation? Evidence from Chinese listed companies," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 3832-3854, July.
    7. Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.
    8. Jun-Ho Huh & Jong Hyuk Park, 2020. "Decrepit Building Monitoring Solution for Zero Energy Building Management Using PLC and Android Application," Sustainability, MDPI, vol. 12(5), pages 1-26, March.
    9. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    10. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    11. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    12. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    13. Anders S. G. Andrae & Mikko Samuli Vaija, 2017. "Precision of a Streamlined Life Cycle Assessment Approach Used in Eco-Rating of Mobile Phones," Challenges, MDPI, vol. 8(2), pages 1-24, August.
    14. Bartłomiej Kocot & Paweł Czarnul & Jerzy Proficz, 2023. "Energy-Aware Scheduling for High-Performance Computing Systems: A Survey," Energies, MDPI, vol. 16(2), pages 1-28, January.
    15. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    16. Elgaaied-Gambier, Leila & Bertrandias, Laurent & Bernard, Yohan, 2020. "Cutting the Internet's Environmental Footprint: An Analysis of Consumers' Self-Attribution of Responsibility," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 120-135.
    17. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    18. José Varela-Aldás & Steven Silva & Guillermo Palacios-Navarro, 2022. "IoT-Based Alternating Current Electrical Parameters Monitoring System," Energies, MDPI, vol. 15(18), pages 1-23, September.
    19. Guido Cavraro & Tommaso Caldognetto & Ruggero Carli & Paolo Tenti, 2019. "A Master/Slave Approach to Power Flow and Overvoltage Control in Low-Voltage Microgrids," Energies, MDPI, vol. 12(14), pages 1-22, July.
    20. Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "A Temperature-Risk and Energy-Saving Evaluation Model for Supporting Energy-Saving Measures for Data Center Server Rooms," Energies, MDPI, vol. 13(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1900-:d:1040728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.