IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1851-d1039967.html
   My bibliography  Save this article

Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid

Author

Listed:
  • Xinzhong Wang

    (School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Weiquan Fang

    (School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zhongfeng Zhao

    (School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

At present, the nutrient solution of soilless culture is mostly configured by simply using the standard fertilizer formula, lacking the precise matching technology of nutrient solutions based on nutrient elements. It is unable to change the formula configuration according to vegetable types, different growth stages and growth needs, especially in the secondary fertilizer reuse of nutrient solution reflux. In order to make precise secondary fertilization, a model and system for secondary fertilization of nutrient solution residual liquid were established in this paper. It can be used for secondary fertilization based on nutrient ions and reused after the sterilization of the residual liquid. A nutrient solution fertilizer system based on nutrient elements was designed. The nutrient solution fertilizer system based on the online detection of ions was determined with different element compounds as the fertilizer unit. Combined with the existing hydroponic water-soluble inorganic salts, the ion concentration and its proportioning quantitative model of the nutrient solution recovery solution were established. The experimental verification and result analysis of the fertilizer model were carried out to test the accuracy and practicability of the established model. The ion concentration error obtained from the mathematical model was established as 0.0093–0.5294 mg · L − 1 .The precise proportioning technology of nutrient solution based on nutrient elements can realize the precise and intelligent proportioning of nutrient elements in the nutrient solution of crops and can also make full use of the nutrient solution. It also improves the efficiency of greenhouse cultivation.

Suggested Citation

  • Xinzhong Wang & Weiquan Fang & Zhongfeng Zhao, 2023. "Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1851-:d:1039967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    2. Ajagekar, Akshay & Decardi-Nelson, Benjamin & You, Fengqi, 2024. "Energy management for demand response in networked greenhouses with multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 355(C).
    3. Xiaoxing Weng & Dapeng Tan & Gang Wang & Changqing Chen & Lianyou Zheng & Mingan Yuan & Duojiao Li & Bin Chen & Li Jiang & Xinrong Hu, 2023. "CFD Simulation and Optimization of the Leaf Collecting Mechanism for the Riding-Type Tea Plucking Machine," Agriculture, MDPI, vol. 13(5), pages 1-21, April.
    4. Dapeng Tan & Libin Zhang & Qinglin Ai, 2019. "An embedded self-adapting network service framework for networked manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 539-556, February.
    5. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    6. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    8. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    9. Khan, Zaid Ashiq & Koondhar, Mansoor Ahmed & Tiantong, Ma & Khan, Aftab & Nurgazina, Zhanar & Tianjun, Liu & Fengwang, Ma, 2022. "Do chemical fertilizers, area under greenhouses, and renewable energies drive agricultural economic growth owing the targets of carbon neutrality in China?," Energy Economics, Elsevier, vol. 115(C).
    10. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    11. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    12. Jiaming Guo & Yanhua Liu & Enli Lü, 2019. "Numerical Simulation of Temperature Decrease in Greenhouses with Summer Water-Sprinkling Roof," Energies, MDPI, vol. 12(12), pages 1-15, June.
    13. María S. Fernández-García & Pablo Vidal-López & Desirée Rodríguez-Robles & José R. Villar-García & Rafael Agujetas, 2020. "Numerical Simulation of Multi-Span Greenhouse Structures," Agriculture, MDPI, vol. 10(11), pages 1-31, October.
    14. Chang, Hsuan & Hsu, Jian-An & Chang, Cheng-Liang & Ho, Chii-Dong & Cheng, Tung-Wen, 2017. "Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules," Applied Energy, Elsevier, vol. 185(P2), pages 2045-2057.
    15. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    16. Zhao, Chun-Jiang & Han, Jia-Wei & Yang, Xin-Ting & Qian, Jian-Ping & Fan, Bei-Lei, 2016. "A review of computational fluid dynamics for forced-air cooling process," Applied Energy, Elsevier, vol. 168(C), pages 314-331.
    17. Chen, Wei-Han & Mattson, Neil S. & You, Fengqi, 2022. "Intelligent control and energy optimization in controlled environment agriculture via nonlinear model predictive control of semi-closed greenhouse," Applied Energy, Elsevier, vol. 320(C).
    18. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    19. Iddio, E. & Wang, L. & Thomas, Y. & McMorrow, G. & Denzer, A., 2020. "Energy efficient operation and modeling for greenhouses: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. Md Nafiul Islam & Md Zafar Iqbal & Mohammod Ali & Md Ashrafuzzaman Gulandaz & Md Shaha Nur Kabir & Seung-Ho Jang & Sun-Ok Chung, 2023. "Evaluation of a 0.7 kW Suspension-Type Dehumidifier Module in a Closed Chamber and in a Small Greenhouse," Sustainability, MDPI, vol. 15(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1851-:d:1039967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.