A New Approach for Improving Microbial Fuel Cell Performance Using Artificial Intelligence
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Abed Alaswad & Abdelnasir Omran & Jose Ricardo Sodre & Tabbi Wilberforce & Gianmichelle Pignatelli & Michele Dassisti & Ahmad Baroutaji & Abdul Ghani Olabi, 2020. "Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells," Energies, MDPI, vol. 14(1), pages 1-21, December.
- Mostafa Ghasemi & Mehdi Sedighi & Yie Hua Tan, 2021. "Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
- Janitza, Silke & Tutz, Gerhard & Boulesteix, Anne-Laure, 2016. "Random forest for ordinal responses: Prediction and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 57-73.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
- Buczak, Philip & Horn, Daniel & Pauly, Markus, 2024. "Old but Gold or New and Shiny? Comparing Tree Ensembles for Ordinal Prediction with a Classic Parametric Approach," OSF Preprints v7bcf, Center for Open Science.
- Roman Hornung, 2020. "Ordinal Forests," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 4-17, April.
- Marcella Corduas & Alfonso Piscitelli, 2017. "Modeling university student satisfaction: the case of the humanities and social studies degree programs," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 617-628, March.
- Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Renny Nazario-Naveda & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-Torres, 2023. "Potential Use of Coriander Waste as Fuel for the Generation of Electric Power," Sustainability, MDPI, vol. 15(2), pages 1-10, January.
- Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
- Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
- Wang, Yong & Ma, Yinjie & Xie, Deyi & Yu, Zhenhuan & E, Jiaqiang, 2021. "Numerical study on the influence of gasoline properties and thermodynamic conditions on premixed laminar flame velocity at multiple conditions," Energy, Elsevier, vol. 233(C).
- Odey Alshboul & Ali Shehadeh & Ghassan Almasabha & Ali Saeed Almuflih, 2022. "Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
- Aleix Alcacer & Irene Epifanio & Jorge Valero & Alfredo Ballester, 2021. "Combining Classification and User-Based Collaborative Filtering for Matching Footwear Size," Mathematics, MDPI, vol. 9(7), pages 1-15, April.
- Ha, Tran Vinh & Asada, Takumi & Arimura, Mikiharu, 2019. "Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods," Journal of Transport Geography, Elsevier, vol. 78(C), pages 70-86.
- García-Salaberri, Pablo A. & Sánchez-Ramos, Arturo, 2024. "Modeling of a polymer electrolyte membrane fuel cell with a hybrid continuum/discrete formulation at the rib/channel scale: Effect of relative humidity and temperature on performance and two-phase tra," Applied Energy, Elsevier, vol. 367(C).
- Weidong Guo & Zach Zhizhong Zhou, 2022. "A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1248-1313, September.
- Maljkovic, Danica & Basic, Bojana Dalbelo, 2020. "Determination of influential parameters for heat consumption in district heating systems using machine learning," Energy, Elsevier, vol. 201(C).
- Apostolos G. Katsafados & Dimitris Anastasiou, 2024.
"Short-term prediction of bank deposit flows: do textual features matter?,"
Annals of Operations Research, Springer, vol. 338(2), pages 947-972, July.
- Katsafados, Apostolos & Anastasiou, Dimitris, 2022. "Short-term Prediction of Bank Deposit Flows: Do Textual Features matter?," MPRA Paper 111418, University Library of Munich, Germany.
- Lechner, Michael & Okasa, Gabriel, 2019.
"Random Forest Estimation of the Ordered Choice Model,"
Economics Working Paper Series
1908, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner & Gabriel Okasa, 2019. "Random Forest Estimation of the Ordered Choice Model," Papers 1907.02436, arXiv.org, revised Sep 2022.
- Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
- Mingzhang Pan & Chengjie Pan & Jinyang Liao & Chao Li & Rong Huang & Qiwei Wang, 2021. "Assessment of Sensitivity to Evaluate the Impact of Operating Parameters on Stability and Performance in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(14), pages 1-23, July.
- Yifei Jiang & Honglei Zhang & Xianting Cao & Ge Wei & Yang Yang, 2023. "How to better incorporate geographic variation in Airbnb price modeling?," Tourism Economics, , vol. 29(5), pages 1181-1203, August.
- Ghasemi, Mostafa & Rezk, Hegazy, 2024. "Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling," Energy, Elsevier, vol. 286(C).
More about this item
Keywords
artificial intelligence; microbial fuel cell; machine learning; random forest regression; gradient boost regression tree; particle swarm optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1312-:d:1031077. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.