IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1273-d1030349.html
   My bibliography  Save this article

Complex Method of the Consumer Value Estimation on the Way to Risk-Free and Sustainable Production

Author

Listed:
  • Marina V. Bolsunovskaya

    (Laboratory of Industrial System for Streaming Data Processing, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Aleksei M. Gintciak

    (Laboratory of Digital Modeling of Industrial Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Zhanna V. Burlutskaya

    (Laboratory of Digital Modeling of Industrial Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Daria A. Zubkova

    (Laboratory of Digital Modeling of Industrial Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Alexandra A. Petryaeva

    (Laboratory of Digital Modeling of Industrial Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

  • Darya E. Fedyaevskaya

    (Laboratory of Digital Modeling of Industrial Systems, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia)

Abstract

Sustainable consumption and production strive for the rational management of natural resources, which implies a transition to the production of fewer goods with the greatest consumer value. Consequently, the consumer value assessment is a key task in the product and service design. However, a large number of applied practices for assessing consumer value is a challenge for researchers. Multiple heterogeneous solutions without a common classification and structure do not allow comparing methods with each other. Thus, there is a demand for some universal algorithm for assessing consumer value, which would be a model for the development of individual industry practices. Therefore, the present research aims to develop a universal algorithm for assessing consumer value, which is a unified sample. The work analyzes the current expertise in assessing consumer value. The paper provides a comparison of mathematical tools for aggregate indicators in order to develop a general formula for assessing consumer value. As a result, an algorithm for assessing consumer value has been developed, which includes the following stages: market segmentation by consumer groups, taking into account their personal characteristics and needs; product hierarchical division into groups according to indicators valuable to the consumer; selection of a scale for evaluating indicators; hierarchical convolution, calculation of the consumer value of selected indicators and their aggregation into a final assessment in accordance with coefficients obtained as a result of the initial data analysis. As part of the algorithm verification, an example of the implementation of the algorithm steps based on expert assessment of the tourist product characteristics is proposed. At the next stage of the study, a register of mathematical tools will be specified to ensure the implementation of the algorithm steps, and practical testing on real data on several products from different industries.

Suggested Citation

  • Marina V. Bolsunovskaya & Aleksei M. Gintciak & Zhanna V. Burlutskaya & Daria A. Zubkova & Alexandra A. Petryaeva & Darya E. Fedyaevskaya, 2023. "Complex Method of the Consumer Value Estimation on the Way to Risk-Free and Sustainable Production," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1273-:d:1030349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dan Itkis & Tugrul Daim & Nuri Basoglu, 2009. "Balancing efficiency and competitiveness in outsourcing decisions," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 5(5), pages 662-686.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    5. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    6. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    7. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    8. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    9. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    10. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    11. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    12. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    13. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    14. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    15. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    16. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    17. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    18. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    19. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    20. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1273-:d:1030349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.