IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1214-d1029742.html
   My bibliography  Save this article

Characterizing Current THD’s Dependency on Solar Irradiance and Supraharmonics Profiling for a Grid-Tied Photovoltaic Power Plant

Author

Listed:
  • Sukanta Roy

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Anjan Debnath

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Mohd Tariq

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Milad Behnamfar

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Arif Sarwat

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

Abstract

The rapidly increasing distributed energy resources (DERs) in power systems are now getting interconnected to set community grid structures, where power quality will be a major concern. The grid-to-grid (G2G) bidirectional power transfer among the distribution microgrid will not be considered commercially feasible unless the upstream harmonics are under the limits. The aggregation of such harmonics, measured as total harmonic distortion (THD), is feared to be beyond tolerable limits with the progression of rooftop grid-tied PV-like installations. Hence, this THD needs to be characterized with DER generation end variables. In this work, the photovoltaic (PV) DERs’ dependency on environment variables such as irradiance was profiled in the context of generating and injecting harmonics into the grid. A mathematical model of a grid-tied three-phase PV DER was developed as part of this correlation characterization, matching the fundamental unit structure of a 1.4 MW solar canopy located on the Florida International University (FIU) Miami campus. To determine the qualitative association with produced THD patterns, the model was evaluated with various irradiance settings. A real-time digital simulation (RTDS) platform was used to verify it. Following this confirmation, sets of data from power quality meters at the point of common coupling and FIU field sensors were utilized to validate further the correlation model. The results showed that the grid current’s THD exhibited a high correlation with the irradiance profile and its variation over time. The early morning and late afternoon periods of the day, associated with a low irradiance, constantly had higher harmonics generated from the PV DER. The midday THD was rather rational with partial shadings, hence a geolocation-dependent factor. These findings were verified by an RTDS and validated by real field data. In quantifying the THD injected by a single DER at a high-frequency (2–150 kHz) supraharmonics (SH) level, a 3% peak increment in magnitude was observed from the high-fixed to the low-fixed irradiance profile. The correlation characteristics depicted that the hybrid microgrid suffered from a daytime-dependent harmonic insertion from the grid-tied DER. This is a global problem unless specific measures are taken to mitigate the harmonics. The electrically notorious higher-frequency SH was found to increase proportionally. The G2G power transfer can be limited because of the higher THD in the early morning and late afternoon, which will also worsen because the numbers of grid-tied PV DERs (i.e., rooftop solar and industrial solar) are likely to increase rapidly soon. The community grid structure can thus have a controlled harmonics filtration setup purposefully designed to address the findings of this work, which also fall within the scope of our future research.

Suggested Citation

  • Sukanta Roy & Anjan Debnath & Mohd Tariq & Milad Behnamfar & Arif Sarwat, 2023. "Characterizing Current THD’s Dependency on Solar Irradiance and Supraharmonics Profiling for a Grid-Tied Photovoltaic Power Plant," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1214-:d:1029742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    2. Md Reyaz Hussan & Mohammad Irfan Sarwar & Adil Sarwar & Mohd Tariq & Shafiq Ahmad & Adamali Shah Noor Mohamed & Irfan A. Khan & Mohammad Muktafi Ali Khan, 2022. "Aquila Optimization Based Harmonic Elimination in a Modified H-Bridge Inverter," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    3. Fatemeh Nasr Esfahani & Ahmed Darwish & Barry W. Williams, 2022. "Power Converter Topologies for Grid-Tied Solar Photovoltaic (PV) Powered Electric Vehicles (EVs)—A Comprehensive Review," Energies, MDPI, vol. 15(13), pages 1-28, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed A. Ewees & Fatma H. Ismail & Rania M. Ghoniem & Marwa A. Gaheen, 2022. "Enhanced Marine Predators Algorithm for Solving Global Optimization and Feature Selection Problems," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    2. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    3. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    4. Jacek Kusznier, 2023. "Influence of Environmental Factors on the Intelligent Management of Photovoltaic and Wind Sections in a Hybrid Power Plant," Energies, MDPI, vol. 16(4), pages 1-15, February.
    5. Muhammad Ahsan & Jose Rodriguez & Mohamed Abdelrahem, 2023. "Distributed Control Algorithm for DC Microgrid Using Higher-Order Multi-Agent System," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    6. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    7. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    8. Saud Alotaibi & Xiandong Ma & Ahmed Darwish, 2022. "Dual Isolated Multilevel Modular Inverter with Novel Switching and Voltage Stress Suppression," Energies, MDPI, vol. 15(14), pages 1-18, July.
    9. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    10. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.
    11. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    12. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    13. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    14. Kenji Araki & Yasuyuki Ota & Anju Maeda & Minoru Kumano & Kensuke Nishioka, 2023. "Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors," Energies, MDPI, vol. 16(8), pages 1-25, April.
    15. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    16. Mohammad H. Nadimi-Shahraki & Shokooh Taghian & Seyedali Mirjalili & Laith Abualigah, 2022. "Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
    17. Mohammad Kamrul Hasan & AKM Ahasan Habib & Shayla Islam & Mohammed Balfaqih & Khaled M. Alfawaz & Dalbir Singh, 2023. "Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations," Energies, MDPI, vol. 16(3), pages 1-20, January.
    18. Hina Gohar Ali & Ramon Vilanova Arbos, 2020. "Chattering Free Adaptive Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking," Energies, MDPI, vol. 13(21), pages 1-18, October.
    19. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    20. Sushmita Kujur & Hari Mohan Dubey & Surender Reddy Salkuti, 2023. "Demand Response Management of a Residential Microgrid Using Chaotic Aquila Optimization," Sustainability, MDPI, vol. 15(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1214-:d:1029742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.