IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1104-d1027634.html
   My bibliography  Save this article

A Variable-Fidelity Multi-Objective Evolutionary Method for Polygonal Pin Fin Heat Sink Design

Author

Listed:
  • Xinjian Deng

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)

  • Enying Li

    (College of Mechanical & Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China)

  • Hu Wang

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)

Abstract

For the multi-objective design of heat sinks, several evolutionary algorithms usually require many iterations to converge, which is computationally expensive. Variable-fidelity multi-objective (VFO) methods were suggested to improve the efficiency of evolutionary algorithms. However, multi-objective problems are seldom optimized using VFO. Therefore, a variable-fidelity evolutionary method (VFMEM) was suggested. Similar to other variable-fidelity algorithms, VFMEM solves a high-fidelity model using a low-fidelity model. Compared with other algorithms, the distinctive characteristic of VFMEM is its application in multi-objective optimization. First, the suggested method uses a low-fidelity model to locate the region where the global optimal solution might be found. Sequentially, both high- and low-fidelity models can be integrated to find the real global optimal solution. Circulation distance elimination (CDE) was suggested to uniformly obtain the PF. To evaluate the feasibility of VFMEM, two classical benchmark functions were tested. Compared with the widely used multi-objective particle swarm optimization (MOPSO), the efficiency of VFMEM was significantly improved and the Pareto frontier (PFs) could also be obtained. To evaluate the algorithm’s feasibility, a polygonal pin fin heat sink (PFHS) design was carried out using VFMEM. Compared with the initial design, the results showed that the mass, base temperature, and temperature difference of the designed optimum heat sink were decreased 5.5%, 18.5%, and 62.0%, respectively. More importantly, if the design was completed directly by MOPSO, the computational cost of the entire optimization procedure would be significantly increased.

Suggested Citation

  • Xinjian Deng & Enying Li & Hu Wang, 2023. "A Variable-Fidelity Multi-Objective Evolutionary Method for Polygonal Pin Fin Heat Sink Design," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1104-:d:1027634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pourfattah, Farzad & Sabzpooshani, Majid, 2021. "On the thermal management of a power electronics system: Optimization of the cooling system using genetic algorithm and response surface method," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Guan & Hongjiang Cui & Jiyou Fei, 2023. "Study on Optimization of Copper to Aluminum for Locomotive Finned Tube Radiator," Energies, MDPI, vol. 16(5), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Zhang, Yu & Liu, Yilin & An, Hui & Jin, Liwen, 2024. "Multi-objective optimization of hollow fiber membrane-based water cooler for enhanced cooling performance and energy efficiency," Renewable Energy, Elsevier, vol. 222(C).
    2. Yan, Biao & Yang, Wansheng & He, Fuquan & Huang, Kehua & Zeng, Wenhao & Zhang, Wenlong & Ye, Haiseng, 2022. "Strategical district cooling system operation in hub airport terminals, a research focusing on COVID-19 pandemic impact," Energy, Elsevier, vol. 255(C).
    3. Wu, Jinming & Qian, Chen & Zheng, Siming & Chen, Ni & Xia, Dan & Göteman, Malin, 2022. "Investigation on the wave energy converter that reacts against an internal inverted pendulum," Energy, Elsevier, vol. 247(C).
    4. Yi-Gao Lv & Gao-Peng Zhang & Qiu-Wang Wang & Wen-Xiao Chu, 2022. "Thermal Management Technologies Used for High Heat Flux Automobiles and Aircraft: A Review," Energies, MDPI, vol. 15(21), pages 1-39, November.
    5. Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1104-:d:1027634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.