IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16645-d1295900.html
   My bibliography  Save this article

Optimization of Communication Base Station Battery Configuration Considering Demand Transfer and Sleep Mechanism under Uncertain Interruption Duration

Author

Listed:
  • Feifeng Zheng

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Kezheng Chen

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Ming Liu

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

In the communication power supply field, base station interruptions may occur due to sudden natural disasters or unstable power supplies. This work studies the optimization of battery resource configurations to cope with the duration uncertainty of base station interruption. We mainly consider the demand transfer and sleep mechanism of the base station and establish a two-stage stochastic programming model to minimize battery configuration costs and operational costs. To transform the uncertainty expression in the first stage into a deterministic model, we design the K-Means-SAA algorithm to accelerate problem-solving and to compare it with the SAA algorithm. The case study results indicate that the proposed two-stage stochastic programming model can save 17.02% of the total cost compared to the expected value model. The proposed demand transfer and sleep mechanism can reduce the total cost by 41.92% compared to no mechanism. The results of numerical experiments and sensitivity analysis also verify the superiority of the designed algorithm in terms of running efficiency and solving time. Therefore, the model and algorithm proposed in this work provide valuable application guidance for large-scale base station configuration optimization of battery resources to cope with interruptions in practical scenarios.

Suggested Citation

  • Feifeng Zheng & Kezheng Chen & Ming Liu, 2023. "Optimization of Communication Base Station Battery Configuration Considering Demand Transfer and Sleep Mechanism under Uncertain Interruption Duration," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16645-:d:1295900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    2. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    3. Abunima, Hamza & Park, Woan-Ho & Glick, Mark B. & Kim, Yun-Su, 2022. "Two-Stage stochastic optimization for operating a Renewable-Based Microgrid," Applied Energy, Elsevier, vol. 325(C).
    4. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    5. Xin Liu & Feng Chu & Feifeng Zheng & Chengbin Chu & Ming Liu, 2021. "Parallel machine scheduling with stochastic release times and processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 59(20), pages 6327-6346, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    2. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    3. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Wang, Gang, 2024. "Order assignment and two-stage integrated scheduling in fruit and vegetable supply chains," Omega, Elsevier, vol. 124(C).
    5. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    6. Yilun Zhang & Jianghang Chen & Zhibin Jiang, 2023. "Optimal product service system configuration considering pairing utility and uncertain customer behavior," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 343-375, June.
    7. Hu, Shaolong & Dong, Zhijie Sasha & Dai, Rui, 2024. "A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    8. Alikhani, Reza & Ranjbar, Amirhossein & Jamali, Amir & Torabi, S. Ali & Zobel, Christopher W., 2023. "Towards increasing synergistic effects of resilience strategies in supply chain network design," Omega, Elsevier, vol. 116(C).
    9. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    10. Zhijie Huang & Lin Huang & Debiao Li, 2024. "Co-Evolutionary Algorithm for Two-Stage Hybrid Flow Shop Scheduling Problem with Suspension Shifts," Mathematics, MDPI, vol. 12(16), pages 1-30, August.
    11. Tan, Mao & Li, Zibin & Su, Yongxin & Ren, Yuling & Wang, Ling & Wang, Rui, 2024. "Dual time-scale robust optimization for energy management of distributed energy community considering source-load uncertainty," Renewable Energy, Elsevier, vol. 226(C).
    12. Dapeng Yang & Daqing Wu & Luyan Shi, 2019. "Distribution-Free Stochastic Closed-Loop Supply Chain Design Problem with Financial Management," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    13. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    14. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    15. Julia Monzón & Federico Liberatore & Begoña Vitoriano, 2020. "A Mathematical Pre-Disaster Model with Uncertainty and Multiple Criteria for Facility Location and Network Fortification," Mathematics, MDPI, vol. 8(4), pages 1-17, April.
    16. Zhu, Yansong & Liu, Jizhen & Hu, Yong & Xie, Yan & Zeng, Deliang & Li, Ruilian, 2024. "Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy," Energy, Elsevier, vol. 288(C).
    17. Tugba Saraç & Feristah Ozcelik & Mehmet Ertem, 2023. "Unrelated parallel machine scheduling problem with stochastic sequence dependent setup times," Operational Research, Springer, vol. 23(3), pages 1-19, September.
    18. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    19. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    20. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16645-:d:1295900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.