IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15793-d1277183.html
   My bibliography  Save this article

Dynamic Evaluation Method for Mutation Degree of Passenger Flow in Urban Rail Transit

Author

Listed:
  • Ting Chen

    (School of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jianxiao Ma

    (School of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Shuang Li

    (School of Transportation, Southeast University, Nanjing 210096, China)

  • Zhenjun Zhu

    (School of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Xiucheng Guo

    (School of Transportation, Southeast University, Nanjing 210096, China)

Abstract

When urban rail transit is affected by interference, the fluctuation pattern of passenger flow undergoes mutation, which is not conducive to its operational safety and sustainable development. The more intense the mutation in the passenger flow, the greater the impact on the network and operations. Therefore, it is necessary to measure and evaluate the mutation degree of the urban rail transit passenger flow. In this study, we clarify the definition of the mutation degree of urban rail transit passenger flow and construct an evaluation index system for the mutation degree of passenger flow from two dimensions: horizontal mutation amplitude and vertical mutation amplitude. Based on the catastrophe theory, an evaluation model of the mutation degree was constructed. Using this evaluation method, abbreviated as CDCT, the level division of the mutation degree at different time intervals under different interference scenarios can be obtained, achieving a dynamic evaluation of the mutation degree of passenger flow. Finally, taking the passenger flow data of the Suzhou rail transit as an example, the mutational fluctuation of passenger flow affected by interference is analyzed, and the evaluation results of the mutation degree of passenger flow are obtained. The analysis results show that the CDCT evaluation method can better reflect the dynamic changes in the mutation degree throughout the process under the influence of the mutational passenger flow.

Suggested Citation

  • Ting Chen & Jianxiao Ma & Shuang Li & Zhenjun Zhu & Xiucheng Guo, 2023. "Dynamic Evaluation Method for Mutation Degree of Passenger Flow in Urban Rail Transit," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15793-:d:1277183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quanchao Chen & Di Wen & Xuqiang Li & Dingjun Chen & Hongxia Lv & Jie Zhang & Peng Gao, 2019. "Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-18, September.
    2. Yuan Yuan & Chunfu Shao & Zhichao Cao & Wenxin Chen & Anteng Yin & Hao Yue & Binglei Xie, 2019. "Urban Rail Transit Passenger Flow Forecasting Method Based on the Coupling of Artificial Fish Swarm and Improved Particle Swarm Optimization Algorithms," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    3. Xinjiang Wei & Xiao Wang & Taotao Chen & Zhi Ding & Xi Wu, 2021. "Comparison of the Fold and Cusp Catastrophe Models for Tensile Cracking and Sliding Rockburst," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, March.
    4. Peikun Li & Chaoqun Ma & Jing Ning & Yun Wang & Caihua Zhu, 2019. "Analysis of Prediction Accuracy under the Selection of Optimum Time Granularity in Different Metro Stations," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    5. Mostafa, Mohamed M., 2022. "Five decades of catastrophe theory research: Geographical atlas, knowledge structure and historical roots," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Yanshuo Sun & Jungang Shi & Paul M. Schonfeld, 2016. "Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro," Public Transport, Springer, vol. 8(3), pages 341-363, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    2. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    3. Hainan Huang & Yi Lin & Jiancheng Weng & Jian Rong & Xiaoming Liu, 2018. "Identification of Inelastic Subway Trips Based on Weekly Station Sequence Data: An Example from the Beijing Subway," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    4. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    5. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    6. Liu, Jie & He, Mingwei & Schonfeld, Paul M. & Kato, Hironori & Li, Anjun, 2022. "Measures of accessibility incorporating time reliability for an urban rail transit network: A case study in Wuhan, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 471-489.
    7. Günter Wallner & Simone Kriglstein & Edward Chung & Syeed Anta Kashfi, 2018. "Visualisation of trip chaining behaviour and mode choice using household travel survey data," Public Transport, Springer, vol. 10(3), pages 427-453, December.
    8. Ying Lu & Shuqi Sun, 2020. "Scenario-Based Allocation of Emergency Resources in Metro Emergencies: A Model Development and a Case Study of Nanjing Metro," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    9. Wu, Laiyun & Kang, Jee Eun & Chung, Younshik & Nikolaev, Alexander, 2021. "Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data," Omega, Elsevier, vol. 101(C).
    10. Pei Yin & Miaojuan Peng, 2023. "Station Layout Optimization and Route Selection of Urban Rail Transit Planning: A Case Study of Shanghai Pudong International Airport," Mathematics, MDPI, vol. 11(6), pages 1-29, March.
    11. Lu Zeng & Zinuo Li & Jie Yang & Xinyue Xu, 2022. "CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    12. Michael Wood & Emanuele Ogliari & Alfredo Nespoli & Travis Simpkins & Sonia Leva, 2023. "Day Ahead Electric Load Forecast: A Comprehensive LSTM-EMD Methodology and Several Diverse Case Studies," Forecasting, MDPI, vol. 5(1), pages 1-18, March.
    13. Jie Liu & Paul Schonfeld & Jinqu Chen & Yong Yin & Qiyuan Peng, 2021. "Perceived Trip Time Reliability and Its Cost in a Rail Transit Network," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    14. Li Guangfu & Wang Xu & Ren Jia, 2020. "Multi-packet transmission aero-engine DCS neural network sliding mode control based on multi-kernel LS-SVM packet dropout online compensation," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-22, June.
    15. Wanxiang Wang & Ruijun Guo, 2022. "Travel Time Reliability of Highway Network under Multiple Failure Modes," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    16. Li He & Martin Trépanier & Bruno Agard, 2021. "Space–time classification of public transit smart card users’ activity locations from smart card data," Public Transport, Springer, vol. 13(3), pages 579-595, October.
    17. Jinjun Tang & Xiaolu Wang & Fang Zong & Zheng Hu, 2020. "Uncovering Spatio-temporal Travel Patterns Using a Tensor-based Model from Metro Smart Card Data in Shenzhen, China," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    18. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    19. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15793-:d:1277183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.