Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0222365
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
- Ting Chen & Jianxiao Ma & Shuang Li & Zhenjun Zhu & Xiucheng Guo, 2023. "Dynamic Evaluation Method for Mutation Degree of Passenger Flow in Urban Rail Transit," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
- Li Guangfu & Wang Xu & Ren Jia, 2020. "Multi-packet transmission aero-engine DCS neural network sliding mode control based on multi-kernel LS-SVM packet dropout online compensation," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-22, June.
- Michael Wood & Emanuele Ogliari & Alfredo Nespoli & Travis Simpkins & Sonia Leva, 2023. "Day Ahead Electric Load Forecast: A Comprehensive LSTM-EMD Methodology and Several Diverse Case Studies," Forecasting, MDPI, vol. 5(1), pages 1-18, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222365. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.