IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15409-d1270112.html
   My bibliography  Save this article

Medium- and Long-Term Prediction of Airport Carbon Emissions under Uncertain Conditions Based on the LEAP Model

Author

Listed:
  • Wenjing Ye

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Lili Wan

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Zhan Wang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Wenhui Ye

    (School of Architecture, Southeast University, Nanjing 210096, China)

  • Jinhui Chen

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yangyang Lv

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Zhanpeng Shan

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Huazhong Wang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xinyue Jiang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

As important nodes in the air transport system, it is of great significance for airports to achieve the carbon-peaking goal before 2030 under the target of peaking carbon emissions in China’s civil aviation industry. However, it remains unknown whether airports will be able to realize this ambitious goal due to a variety of uncertain factors, such as the social economy, epidemic impact, and emission reduction measures. According to the possibilities of uncertain factors, 12 uncertain scenarios were constructed. Using the case of Guangzhou Baiyun International Airport (CAN), this study predicted medium- and long-term carbon emission trends under 12 uncertain scenarios based on the Long-range Energy Alternatives Planning System (LEAP) model. Furthermore, the effects of carbon abatement measures and emission reduction responsibilities were analyzed. The results show that CAN cannot guarantee that it will realize the goal under the established abatement policy. If socioeconomic development is rapid, carbon emissions will peak at about 90 kt tons in 2030, and if socioeconomic development is slow, it will plateau at about 1 million tons between 2030 and 2035. What is more, airlines bear the greatest responsibility for reducing emissions, and technological progress measures have the highest abatement potential. This study provides decision support for airport stakeholders in abatement work so as to ensure that airports can achieve the carbon-peaking goal.

Suggested Citation

  • Wenjing Ye & Lili Wan & Zhan Wang & Wenhui Ye & Jinhui Chen & Yangyang Lv & Zhanpeng Shan & Huazhong Wang & Xinyue Jiang, 2023. "Medium- and Long-Term Prediction of Airport Carbon Emissions under Uncertain Conditions Based on the LEAP Model," Sustainability, MDPI, vol. 15(21), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15409-:d:1270112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/6792 is not listed on IDEAS
    2. Scheelhaase, Janina D. & Grimme, Wolfgang G., 2007. "Emissions trading for international aviation—an estimation of the economic impact on selected European airlines," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 253-263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    2. Armin Ibitz, 2015. "Towards a global scheme for carbon emissions reduction in aviation: China’s role in blocking the extension of the European Union’s Emissions Trading Scheme," Asia Europe Journal, Springer, vol. 13(2), pages 113-130, June.
    3. Lee, Tsung-Chen & Chang, Young-Tae & Lee, Paul T.W., 2013. "Economy-wide impact analysis of a carbon tax on international container shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 87-102.
    4. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.
    5. Barbot, Cristina & Betancor, Ofelia & Socorro, M. Pilar & Viecens, M. Fernanda, 2014. "Trade-offs between environmental regulation and market competition: Airlines, emission trading systems and entry deterrence," Transport Policy, Elsevier, vol. 33(C), pages 65-72.
    6. Wang, Xuhui & Xi, Haonan, 2023. "Carbon mitigation policy and international tourism. Does the European Union Emissions Trading System hit international tourism from member states?," Annals of Tourism Research, Elsevier, vol. 103(C).
    7. Koopmans, Carl & Lieshout, Rogier, 2016. "Airline cost changes: To what extent are they passed through to the passenger?," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 1-11.
    8. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    9. Rosskopf, Michael & Lehner, Stephan & Gollnick, Volker, 2014. "Economic–environmental trade-offs in long-term airline fleet planning," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 109-115.
    10. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    11. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    12. Sungwook Yoon & Sukjae Jeong, 2016. "RETRACTED: Carbon Emission Mitigation Potentials of Different Policy Scenarios and Their Effects on International Aviation in the Korean Context," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    13. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.
    14. Albers, Sascha & Bühne, Jan-André & Peters, Heiko, 2009. "Will the EU-ETS instigate airline network reconfigurations?," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 1-6.
    15. Estelle Malavolti & Marion Podesta, 2011. "Inclusion of the aviation sector into the emission trading scheme : an economic analysis," Post-Print hal-01022239, HAL.
    16. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Tiziana D'Alfonso & Changmin Jiang & Valentina Bracaglia, 2015. "Air transport and high-speed rail competition: environmental implications and mitigation strategies," DIAG Technical Reports 2015-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    18. Cohen, Maurie J., 2010. "Destination unknown: Pursuing sustainable mobility in the face of rival societal aspirations," Research Policy, Elsevier, vol. 39(4), pages 459-470, May.
    19. Forsyth, Peter, 2011. "Environmental and financial sustainability of air transport: Are they incompatible?," Journal of Air Transport Management, Elsevier, vol. 17(1), pages 27-32.
    20. Jiali Zheng & Han Qiao & Shouyang Wang, 2017. "The Effect of Carbon Tax in Aviation Industry on the Multilateral Simulation Game," Sustainability, MDPI, vol. 9(7), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15409-:d:1270112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.