IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p15138-d1264942.html
   My bibliography  Save this article

Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China

Author

Listed:
  • Yong Luo

    (College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China)

  • Dianpeng Chen

    (College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China)

  • Xiaoguo Wang

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

Abstract

China stands as one of the world’s largest agricultural powerhouses, boasting abundant crop resources. Nonetheless, there remains a lack of clarity regarding the extensive scale of crop residue return in the fields. Drawing from direct field measurements and comprehensive survey data, this paper pioneers the reporting of residues from the five primary crops, shedding light on the associated nutrient components, including carbon (C), nitrogen (N), and phosphorus (P) replenishment via crop roots, stubble, and straw in the Southwest China region for the year 2012. The results showed that the total amount of the main crop residue resources was 97.4 Mt, which was composed of 17.8 Mt, 12.6 Mt, and 67 Mt for crop root, stubble, and straw, respectively. After crops harvested, there were 7165.8 kilotonne nutrient C, 132.2 kilotonne nutrient N, and 9.8 kilotonne nutrient P of crop residues returned to the fields through crop root, respectively, accounting for 44.6%, 48.2%, and 43.4% of the total nutrient returned, which was the main part of crop nutrients return to fields. The amount of nutrient C, N, and P returned through stubbles were 5017.3 kilotonne, 75.9 kilotonne, and 6.8 kilotonne, respectively, accounting for 31.3%, 27.6%, and 30.6% of the total return of crops. From the composition proportion of residues nutrients return to field, the orders were all expressed as follows: root > stubble > straw. According to the optimum fertilization amount of the main crops in Southwest China, the returned of crop residues nutrient N in maize, rice, rapeseed, and wheat can replace approximately 5.6%, 18.4%, 11.2%, and 14.8% of nitrogen fertilizer, and 2.4%, 8.3%, 3%, and 9.2% of phosphate fertilizer, respectively. This conclusion is beneficial for regulating the practice of returning crop residues to the fields and the use of agricultural fertilizers, aiming to achieve sustainable development in agricultural production.

Suggested Citation

  • Yong Luo & Dianpeng Chen & Xiaoguo Wang, 2023. "Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China," Sustainability, MDPI, vol. 15(20), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15138-:d:1264942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/15138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/15138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan Li & Wen Yin & Guiping Chen & Yao Guo & Zhilong Fan & Falong Hu & Fuxue Feng & Hong Fan & Wei He, 2023. "Sustainable Analysis of Maize Production under Previous Wheat Straw Returning in Arid Irrigated Areas," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    2. Liu, Beibei & Wu, Qiaoran & Wang, Feng & Zhang, Bing, 2019. "Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis," Energy, Elsevier, vol. 171(C), pages 393-402.
    3. Jia Mao & Ziang Zhao & Xiangyu Li & Honggang Zhao & Ciyun Lin, 2023. "Comprehensive Benefit of Crop Straw Return Volume under Sustainable Development Management Concept in Heilongjiang, China," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
    4. Wang, Xiaoyu & Yang, Lu & Steinberger, Yosef & Liu, Zuxin & Liao, Shuhua & Xie, Guanghui, 2013. "Field crop residue estimate and availability for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 864-875.
    5. Dominic Kwadwo Anning & Huizhen Qiu & Chunhong Zhang & Philip Ghanney & Yujiao Zhang & Yajun Guo, 2021. "Maize Straw Return and Nitrogen Rate Effects on Potato ( Solanum tuberosum L.) Performance and Soil Physicochemical Characteristics in Northwest China," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    6. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    7. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    3. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Jiqin Ren & Peixian Yu & Xiaohong Xu, 2019. "Straw Utilization in China—Status and Recommendations," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    5. Jinhua Xie & Gangqiao Yang & Ge Wang & Shuoyan He, 2024. "How does social capital affect farmers’ environment-friendly technology adoption behavior? A case study in Hubei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18361-18384, July.
    6. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    7. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    8. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    9. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    10. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    11. Shamal Shasang Kumar & Owais Ali Wani & Binesh Prasad & Amena Banuve & Penaia Mua & Ami Chand Sharma & Shalendra Prasad & Abdul Raouf Malik & Salah El-Hendawy & Mohamed A. Mattar, 2024. "Effects of Mulching on Soil Properties and Yam Production in Tropical Region," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    12. Liu, Xuan & Hu, Ye & Xiao, Yan, 2017. "Risk management for rural energy industry of Sichuan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1029-1044.
    13. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    14. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    15. Zhang, Hang & Deng, Shengxiang & Cao, Xiaolin, 2018. "Density functional theory investigation of gasification mechanism of a lignin dimer with β-5 linkage," Renewable Energy, Elsevier, vol. 115(C), pages 937-945.
    16. Manuel Matisic & Marko Reljic & Ivan Dugan & Paulo Pereira & Vilim Filipovic & Lana Filipovic & Vedran Krevh & Igor Bogunovic, 2023. "Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut ( Corylus avellana L.) in Croatia," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    17. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    18. Jutao Zeng & Jie Lyu, 2023. "Simultaneous Decisions to Undertake Off-Farm Work and Straw Return: The Role of Cognitive Ability," Land, MDPI, vol. 12(8), pages 1-21, August.
    19. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    20. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15138-:d:1264942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.