Urban Rail Transit Station Type Identification Based on “Passenger Flow—Land Use—Job-Housing”
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yu, Zidong & Zhu, Xiaolin & Liu, Xintao, 2022. "Characterizing metro stations via urban function: Thematic evidence from transit-oriented development (TOD) in Hong Kong," Journal of Transport Geography, Elsevier, vol. 99(C).
- Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
- Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
- Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
- Zhou, Yuyang & Zheng, Shuyan & Hu, Zhonghui & Chen, Yanyan, 2022. "Metro station risk classification based on smart card data: A case study in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
- Chen Zhong & Michael Batty & Ed Manley & Jiaqiu Wang & Zijia Wang & Feng Chen & Gerhard Schmitt, 2016. "Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Yang & Thill, Jean-Claude & Xu, Yang & Fang, Zhixiang, 2021. "Variability in individual home-work activity patterns," Journal of Transport Geography, Elsevier, vol. 90(C).
- Zhang, Xiaohu, 2021. "Beyond expected regularity of aggregate urban mobility: A case study of ridesourcing service," Journal of Transport Geography, Elsevier, vol. 95(C).
- Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
- Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
- Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
- Šveda, Martin & Madajová, Michala Sládeková, 2023. "Estimating distance decay of intra-urban trips using mobile phone data: The case of Bratislava, Slovakia," Journal of Transport Geography, Elsevier, vol. 107(C).
- Peikun Li & Chaoqun Ma & Jing Ning & Yun Wang & Caihua Zhu, 2019. "Analysis of Prediction Accuracy under the Selection of Optimum Time Granularity in Different Metro Stations," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
- Jiangjun Wan & Chunchi Ma & Tian Jiang & Andrew Phillips & Xiong Wu & Yanlan Wang & Ziming Wang & Ying Cao, 2024. "A spatial econometric investigation into road traffic accessibility and economic growth: insights from the Chengdu-Chongqing twin-city economic circle," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
- Paul Drummond, 2021. "Assessing City Governance for Low-Carbon Mobility in London," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
- Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
- Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
- He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
- Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
- Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
- Lo, Huai-Wei & Fang, Tzu-Yi & Lin, Sheng-Wei, 2024. "Integrating technological and strategic analysis: Evaluating the key determinants of transportation sustainability in taipei Mass Rapid Transit using the Rough-Fermatean DEMATEL approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
- Sadia Afrose & Ahmad Mojtoba Riyadh & Afsana Haque, 2019. "Cores of Dhaka city: area delimitation and comparison of their characteristics," Asia-Pacific Journal of Regional Science, Springer, vol. 3(2), pages 521-560, June.
- Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
- Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
- Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
- Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
More about this item
Keywords
metro station; mobile phone signaling data; station classification; spatial mismatch; K-means clustering algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:15103-:d:1264111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.