IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13718-d1239839.html
   My bibliography  Save this article

Fast Pyrolysis of Tea Bush, Walnut Shell, and Pine Cone Mixture: Effect of Pyrolysis Parameters on Pyrolysis Crop Yields

Author

Listed:
  • Turgay Kar

    (Faculty of Science, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye)

  • Ömer Kaygusuz

    (Faculty of Engineering, Department of Mechanical Engineering, Giresun University, 28200 Giresun, Türkiye)

  • Mükrimin Şevket Güney

    (Faculty of Engineering, Department of Mechanical Engineering, Giresun University, 28200 Giresun, Türkiye)

  • Erdem Cuce

    (Department of Mechanical Engineering, Faculty of Engineering and Architecture, Zihni Derin Campus, Recep Tayyip Erdogan University, 53100 Rize, Türkiye
    School of Engineering and the Built Environment, Birmingham City University, Birmingham B4 7XG, UK)

  • Sedat Keleş

    (Faculty of Science, Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Türkiye)

  • Saboor Shaik

    (School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India)

  • Abdulhameed Babatunde Owolabi

    (Regional Leading Research Center for Smart Energy System, Kyungpook National University, Sangju 37224, Republic of Korea
    Department of Convergence and Fusion System Engineering, Kyungpook National University, Sangju 37224, Republic of Korea)

  • Benyoh Emmanuel Kigha Nsafon

    (Department of Energy Convergence and Climate Change, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea)

  • Johnson Makinwa Ogunsua

    (Postharvest Engineering Research Department, Nigerian Stored Products Research Institute, Ilorin 240003, Nigeria)

  • Jeung-Soo Huh

    (Department of Energy Convergence and Climate Change, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea)

Abstract

Liquid products obtained by the fast pyrolysis process applied to biomass can be used as chemical raw materials and liquid fuels. In this study, tea bush, walnut shell, and pine cone samples selected as biomass samples were obtained from Trabzon and Rize provinces in the Eastern Black Sea Region and used. When considered in terms of our region, the available biomass waste samples are easy to access and have a high potential in quantity. To employ them in the experimental investigation, these biomass samples were first ground, sieved to a particle size of 1.0 mm, and mixed. A fast pyrolysis process was applied to this obtained biomass mixture in a fixed-bed pyrolysis reactor. The effects of temperature, heating rate, and nitrogen flow rate on the product yields of the fast pyrolysis technique used on the biomass mixture are examined. A constant particle size of 1.0 mm, temperatures of 300, 400, 500, 600, and 750 °C, heating rates of 100, 250, 400, and 600 °C.min −1 , and flow rates of 50, 100, 200, and 300 cm 3 .min −1 were used in tests on fast pyrolysis. The studies showed the 500 °C pyrolysis temperature, 100 °C min −1 heating rate, and 50 cm 3 .min −1 nitrogen flow rate gave the maximum liquid product yield. The liquid product generated under the most compelling circumstances is analyzed to determine moisture, calorific value, fixed carbon, ash, raw coke, and volatile matter. Additionally, the crude bio-oil heating value, measured at 5900 cal/g and produced under the most favorable pyrolysis circumstances, rose by around 40% compared to its starting material. The liquid product obtained from rapid pyrolysis experiments can be used as liquid fuel. The evaluation of the potential of chemical raw materials can be a subject of research in a different discipline since there are many chemical raw materials (glycerine, furfurals, cellulose and derivatives, carbonaceous materials, and so forth) in fast pyrolysis liquids.

Suggested Citation

  • Turgay Kar & Ömer Kaygusuz & Mükrimin Şevket Güney & Erdem Cuce & Sedat Keleş & Saboor Shaik & Abdulhameed Babatunde Owolabi & Benyoh Emmanuel Kigha Nsafon & Johnson Makinwa Ogunsua & Jeung-Soo Huh, 2023. "Fast Pyrolysis of Tea Bush, Walnut Shell, and Pine Cone Mixture: Effect of Pyrolysis Parameters on Pyrolysis Crop Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13718-:d:1239839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bo & Xu, Fanfan & Zong, Peijie & Zhang, Jinhong & Tian, Yuanyu & Qiao, Yingyun, 2019. "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS," Renewable Energy, Elsevier, vol. 132(C), pages 486-496.
    2. Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
    3. Williams, Paul T. & Besler, Serpil, 1996. "The influence of temperature and heating rate on the slow pyrolysis of biomass," Renewable Energy, Elsevier, vol. 7(3), pages 233-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2021. "Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites," Energy, Elsevier, vol. 233(C).
    3. Bernardine Chidozie & Ana Ramos & José Vasconcelos & Luis Pinto Ferreira & Reinaldo Gomes, 2024. "Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    4. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    5. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    6. Grzegorz Maj & Kamil Buczyński & Kamila E. Klimek & Magdalena Kapłan, 2024. "Evaluation of Growth and Energy Parameters of One-Year-Old Raspberry Shoots, Depending on the Variety," Energies, MDPI, vol. 17(13), pages 1-12, June.
    7. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    8. Alessandra Durazzo & Johannes Kiefer & Massimo Lucarini & Emanuela Camilli & Stefania Marconi & Paolo Gabrielli & Altero Aguzzi & Loretta Gambelli & Silvia Lisciani & Luisa Marletta, 2018. "Qualitative Analysis of Traditional Italian Dishes: FTIR Approach," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    9. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    10. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    11. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    12. Wojciech Jerzak & Esther Acha & Bin Li, 2024. "Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis," Energies, MDPI, vol. 17(20), pages 1-31, October.
    13. Collazo, Joaquín & Pazó, José Antonio & Granada, Enrique & Saavedra, Ángeles & Eguía, Pablo, 2012. "Determination of the specific heat of biomass materials and the combustion energy of coke by DSC analysis," Energy, Elsevier, vol. 45(1), pages 746-752.
    14. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.
    15. Beis, S.H. & Onay, Ö. & Koçkar, Ö.M., 2002. "Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions," Renewable Energy, Elsevier, vol. 26(1), pages 21-32.
    16. Mirosław Wyszkowski & Natalia Kordala, 2024. "Trace Elements in Maize Biomass Used to Phyto-Stabilise Iron-Contaminated Soils for Energy Production," Energies, MDPI, vol. 17(12), pages 1-15, June.
    17. Zeng, Kuo & Soria, José & Gauthier, Daniel & Mazza, Germán & Flamant, Gilles, 2016. "Modeling of beech wood pellet pyrolysis under concentrated solar radiation," Renewable Energy, Elsevier, vol. 99(C), pages 721-729.
    18. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Heat transfer in a rotating furnace of asolarsand-boiler at a 1000 kW thermal concentrationsystem," Renewable Energy, Elsevier, vol. 17(1), pages 21-47.
    20. Božidar Matin & Ivan Brandić & Ana Matin & Josip Ištvanić & Alan Antonović, 2024. "Possibilities of Liquefied Spruce ( Picea abies ) and Oak ( Quercus robur ) Biomass as an Environmentally Friendly Additive in Conventional Phenol–Formaldehyde Resin Wood Adhesives," Energies, MDPI, vol. 17(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13718-:d:1239839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.