IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13370-d1234289.html
   My bibliography  Save this article

Sustainability of a Rainfed Wheat Production System in Relation to Water and Nitrogen Dynamics in the Soil in the Eyre Peninsula, South Australia

Author

Listed:
  • Vinod Phogat

    (Crop Sciences, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia
    School of Agriculture, Food and Wine, The University of Adelaide, PMB No.1, Glen Osmond, SA 5064, Australia
    College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia)

  • Jirka Šimůnek

    (Department of Environmental Sciences, University of California, Riverside, CA 92521, USA)

  • Paul Petrie

    (Crop Sciences, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia
    School of Agriculture, Food and Wine, The University of Adelaide, PMB No.1, Glen Osmond, SA 5064, Australia
    College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
    School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Tim Pitt

    (Crop Sciences, South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia
    School of Agriculture, Food and Wine, The University of Adelaide, PMB No.1, Glen Osmond, SA 5064, Australia
    College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia)

  • Vilim Filipović

    (Future Regions Research Centre, Federation University, Gippsland, VIC 3841, Australia
    Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia)

Abstract

Rainfed wheat production systems are usually characterized by low-fertility soils and frequent droughts, creating an unfavorable environment for sustainable crop production. In this study, we used a processed-based biophysical numerical model to evaluate the water balance and nitrogen (N) dynamics in soils under rainfed wheat cultivation at low (219 mm, Pygery) and medium rainfall (392 mm, Yeelanna) sites in south Australia over the two seasons. Estimated evapotranspiration components and N partitioning data were used to calibrate and validate the model and to compute wheat’s water and N use efficiency. There was a large disparity in the estimated water balance components at the two sites. Plant water uptake accounted for 40–50% of rainfall, more at the low rainfall site. In contrast, leaching losses of up to 25% of seasonal rainfall at the medium rainfall site (Yeelanna) indicate a significant amount of water evading the root zone. The model-predicted N partitioning revealed that ammonia–nitrogen (NH 4 –N) contributed little to plant N nutrition, and its concentration in the soil remained below 2 ppm throughout the crop season except immediately after the NH 4 –N-based fertilizer application. Nitrate–nitrogen (NO 3 –N) contributed to most N uptake during both seasons at both locations. The N losses from the soil at the medium rainfall site (3.5–20.5 kg ha −1 ) were mainly attributed to NH 4 –N volatilization (N v ) and NO 3 –N leaching (N L ) below the crop root zone. Water productivity (8–40 kg ha −1 mm −1 ) and N use efficiency (31–41 kg kg −1 ) showed immense variability induced by climate, water availability, and N dynamics in the soil. These results suggest that combining water balance and N modeling can help manage N applications to optimize wheat production and minimize N losses in rainfed agriculture.

Suggested Citation

  • Vinod Phogat & Jirka Šimůnek & Paul Petrie & Tim Pitt & Vilim Filipović, 2023. "Sustainability of a Rainfed Wheat Production System in Relation to Water and Nitrogen Dynamics in the Soil in the Eyre Peninsula, South Australia," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13370-:d:1234289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    2. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    3. Ishaque, Wajid & Osman, Raheel & Hafiza, Barira Shoukat & Malghani, Saadatullah & Zhao, Ben & Xu, Ming & Ata-Ul-Karim, Syed Tahir, 2023. "Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Evett, Steven R. & Schwartz, Robert C. & Casanova, Joaquin J. & Heng, Lee K., 2012. "Soil water sensing for water balance, ET and WUE," Agricultural Water Management, Elsevier, vol. 104(C), pages 1-9.
    5. Xiaowen Wang & Huanjie Cai & Liang Li & Xiaoyun Wang, 2020. "Estimating Soil Water Content and Evapotranspiration of Winter Wheat under Deficit Irrigation Based on SWAP Model," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana E. Jiménez-de-Santiago & Jonatan Ovejero & Montserrat Antúnez & Angela D. Bosch-Serra, 2023. "Ammonia Volatilization from Pig Slurries in a Semiarid Agricultural Rainfed Area," Sustainability, MDPI, vol. 16(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasta, Paolo & Bonanomi, Giuliano & Šimůnek, Jirka & Romano, Nunzio, 2021. "Assessing the nitrate vulnerability of shallow aquifers under Mediterranean climate conditions," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Groenveld, Thomas & Argaman, Amir & Šimůnek, Jiří & Lazarovitch, Naftali, 2021. "Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress," Agricultural Water Management, Elsevier, vol. 254(C).
    3. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    4. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    6. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    7. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    8. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    9. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    10. Wang, Jianjun & Wang, Chuantao & Li, Hongchen & Liu, Yanfang & Li, Huijie & Ren, Ruiqi & Si, Bingcheng, 2023. "Rock water use by apple trees affected by physical properties of the underlying weathered rock," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    12. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    13. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    14. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    15. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Noah James Langenfeld & Daniel Fernandez Pinto & James E. Faust & Royal Heins & Bruce Bugbee, 2022. "Principles of Nutrient and Water Management for Indoor Agriculture," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    17. Sonkar, Ickkshaanshu & Kotnoor, Hari Prasad & Sen, Sumit, 2019. "Estimation of root water uptake and soil hydraulic parameters from root zone soil moisture and deep percolation," Agricultural Water Management, Elsevier, vol. 222(C), pages 38-47.
    18. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Chen, Ning & Li, Xianyue & Shi, Haibin & Yan, Jianwen & Zhang, Yuehong & Hu, Qi, 2023. "Evaluating the effects of plastic film mulching duration on soil nitrogen dynamic and comprehensive benefit for corn (Zea mays L.) field," Agricultural Water Management, Elsevier, vol. 286(C).
    20. Zhang, Hongyuan & Batchelor, William D. & Hu, Kelin & Liang, Hao & Han, Hui & Li, Ji, 2022. "Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China," Ecological Modelling, Elsevier, vol. 470(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13370-:d:1234289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.