IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423002780.html
   My bibliography  Save this article

Rock water use by apple trees affected by physical properties of the underlying weathered rock

Author

Listed:
  • Wang, Jianjun
  • Wang, Chuantao
  • Li, Hongchen
  • Liu, Yanfang
  • Li, Huijie
  • Ren, Ruiqi
  • Si, Bingcheng

Abstract

The contribution of rock water to trees has been widely recognized, but how effective rock water to managed ecosystems remains uncertain. Here, we compared the contribution of rock water to apple tree transpiration in shallow soil overlying weathered rock (SOR) with that from a thick soil without weathered rock (TS). We measured physical properties, root distribution, water contents, water stable isotopes of soil and weathered rock. The weathered rock layer in SOR had significantly higher bulk density and gravel contents than that of soil layers in TS. The volumetric water content and water storage of soil under SOR were significantly higher than those under TS, but the opposite is true for the available water content. The weathered rock layer limited the vertical extension of apple roots, with the maximum root depth was only 100 cm, much smaller than 160 cm in TS; additionally, most of roots were in shallow soil in SOR, with the top 80 cm accounting for more than 91% of the total root length of the profile for SOR relative to 61% for the TS. Water sourcing analysis indicates that the water in the weathered rock contributed 17% to the total water uptake in 2021, while the same depth increment of TS contributed 45%. The low water uptake from the weathered rock limited the sap flow, resulting in 27% yield reduction compared to TS yield. Therefore, even though weathered rock is important for apple production, its contribution is much smaller than the soil at the same depth increment. To improve the rock water use is important for further improving the productivity of apple orchards on shallow soil underlain by weathered rock and should be incorporated into our routine orchard water management.

Suggested Citation

  • Wang, Jianjun & Wang, Chuantao & Li, Hongchen & Liu, Yanfang & Li, Huijie & Ren, Ruiqi & Si, Bingcheng, 2023. "Rock water use by apple trees affected by physical properties of the underlying weathered rock," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002780
    DOI: 10.1016/j.agwat.2023.108413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Liu, Wenna & Chen, Hongsong & Zou, Qiaoyun & Nie, Yunpeng, 2021. "Divergent root water uptake depth and coordinated hydraulic traits among typical karst plantations of subtropical China: Implication for plant water adaptation under precipitation changes," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    4. Gonzalo Miguez-Macho & Ying Fan, 2021. "Spatiotemporal origin of soil water taken up by vegetation," Nature, Nature, vol. 598(7882), pages 624-628, October.
    5. Erica L. McCormick & David N. Dralle & W. Jesse Hahm & Alison K. Tune & Logan M. Schmidt & K. Dana Chadwick & Daniella M. Rempe, 2021. "Widespread woody plant use of water stored in bedrock," Nature, Nature, vol. 597(7875), pages 225-229, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    2. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    3. Li, Yong & Šimůnek, Jirka & Zhang, Zhentin & Jing, Longfei & Ni, Lixiao, 2015. "Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 148(C), pages 213-222.
    4. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    5. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    6. Noah James Langenfeld & Daniel Fernandez Pinto & James E. Faust & Royal Heins & Bruce Bugbee, 2022. "Principles of Nutrient and Water Management for Indoor Agriculture," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    7. Sonkar, Ickkshaanshu & Kotnoor, Hari Prasad & Sen, Sumit, 2019. "Estimation of root water uptake and soil hydraulic parameters from root zone soil moisture and deep percolation," Agricultural Water Management, Elsevier, vol. 222(C), pages 38-47.
    8. Tailin Li & Massimiliano Schiavo & David Zumr, . "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
    9. Zhang, Hongyuan & Batchelor, William D. & Hu, Kelin & Liang, Hao & Han, Hui & Li, Ji, 2022. "Simulation of N2O emissions from greenhouse vegetable production under different management systems in North China," Ecological Modelling, Elsevier, vol. 470(C).
    10. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Huang, Zhongdong & Zhang, Xiaoxian & Ashton, Rhys W. & Hawkesford, Malcom J. & Richard Whalley, W., 2023. "Root phenotyping and root water uptake calculation using soil water contents measured in a winter wheat field," Agricultural Water Management, Elsevier, vol. 290(C).
    12. Margarita A. Petoussi & Nicolas Kalogerakis, 2023. "Mathematical Modeling of Pilot Scale Olive Mill Wastewater Phytoremediation Units," Sustainability, MDPI, vol. 15(11), pages 1-36, May.
    13. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    14. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    15. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    16. Fabio V. Difonzo & Costantino Masciopinto & Michele Vurro & Marco Berardi, 2021. "Shooting the Numerical Solution of Moisture Flow Equation with Root Water Uptake Models: A Python Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2553-2567, June.
    17. Saefuddin, Reskiana & Saito, Hirotaka & Šimůnek, Jiří, 2019. "Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation," Agricultural Water Management, Elsevier, vol. 211(C), pages 111-122.
    18. Bughici, Theodor & Skaggs, Todd H. & Corwin, Dennis L. & Scudiero, Elia, 2022. "Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation," Agricultural Water Management, Elsevier, vol. 272(C).
    19. Bellot, Juan & Chirino, Esteban, 2013. "Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas," Ecological Modelling, Elsevier, vol. 266(C), pages 30-41.
    20. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.