IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4443-d364955.html
   My bibliography  Save this article

Mainstreaming Energetic Resilience by Morphological Assessment in Ordinary Land Use Planning. The Case Study of Moncalieri, Turin (Italy)

Author

Listed:
  • Danial Mohabat Doost

    (Interuniversity Department of Regional and Urban Studies and Planning, Responsible Risk Resilience Centre, Politecnico di Torino, 10125 Torino, Italy)

  • Alessandra Buffa

    (Interuniversity Department of Regional and Urban Studies and Planning, Responsible Risk Resilience Centre, Politecnico di Torino, 10125 Torino, Italy)

  • Grazia Brunetta

    (Interuniversity Department of Regional and Urban Studies and Planning, Responsible Risk Resilience Centre, Politecnico di Torino, 10125 Torino, Italy)

  • Stefano Salata

    (Interuniversity Department of Regional and Urban Studies and Planning, Responsible Risk Resilience Centre, Politecnico di Torino, 10125 Torino, Italy)

  • Guglielmina Mutani

    (Department of Energy “Galileo Ferraris”, Responsible Risk Resilience Centre, Politecnico di Torino, 10129 Torino, Italy)

Abstract

Energetic resilience is seen as one of the most prominent fields of investigation in the upcoming years. The increasing efficiency of urban systems depends on the conversion of energetic production of buildings, and therefore, from the capacity of urban systems to be more rational in the use of renewable resources. Nevertheless, the integration of the energetic regulation into the ordinary urban planning documents is far from being reached in most of planning processes. In Italy, mainstreaming energetic resilience in ordinary land use planning appears particularly challenging, even in those Local Administrations that tried to implement the national legislation into Local Building Regulation. In this work, an empirical methodology to provide an overall assessment of the solar production capacity has been applied to selected indicators of urban morphology among the different land use parcel-zones, while implementing a geographic information system-based approach to the city of Moncalieri, Turin (Italy). Results demonstrate that, without exception, the current minimum energy levels required by law are generally much lower than the effective potential solar energy production that each land use parcel-zone could effectively produce. We concluded that local planning processes should update their land use plans to reach environmental sustainability targets, while at the same time the energetic resilience should be mainstreamed in urban planning by an in-depth analysis of the effective morphological constraints. These aspects may also represent a contribution to the international debates on energetic resilience and on the progressive inclusion of energy subjects in the land use planning process.

Suggested Citation

  • Danial Mohabat Doost & Alessandra Buffa & Grazia Brunetta & Stefano Salata & Guglielmina Mutani, 2020. "Mainstreaming Energetic Resilience by Morphological Assessment in Ordinary Land Use Planning. The Case Study of Moncalieri, Turin (Italy)," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4443-:d:364955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grazia Brunetta & Rosario Ceravolo & Carlo Alberto Barbieri & Alberto Borghini & Francesca de Carlo & Alfredo Mela & Silvia Beltramo & Andrea Longhi & Giulia De Lucia & Stefano Ferraris & Alessandro P, 2019. "Territorial Resilience: Toward a Proactive Meaning for Spatial Planning," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    2. Grazia Brunetta & Stefano Salata, 2019. "Mapping Urban Resilience for Spatial Planning—A First Attempt to Measure the Vulnerability of the System," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
    3. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    4. Sarralde, Juan José & Quinn, David James & Wiesmann, Daniel & Steemers, Koen, 2015. "Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London," Renewable Energy, Elsevier, vol. 73(C), pages 10-17.
    5. Mohajeri, Nahid & Upadhyay, Govinda & Gudmundsson, Agust & Assouline, Dan & Kämpf, Jérôme & Scartezzini, Jean-Louis, 2016. "Effects of urban compactness on solar energy potential," Renewable Energy, Elsevier, vol. 93(C), pages 469-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Salata & Koray Velibeyoğlu & Alper Baba & Nicel Saygın & Virginia Thompson Couch & Taygun Uzelli, 2022. "Adapting Cities to Pluvial Flooding: The Case of Izmir (Türkiye)," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    2. Hoang Long Nguyen & Rajendra Akerkar, 2020. "Modelling, Measuring, and Visualising Community Resilience: A Systematic Review," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    3. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    4. Grazia Brunetta & Ombretta Caldarice & Martino Faravelli, 2022. "Mainstreaming climate resilience: A GIS-based methodology to cope with cloudbursts in Turin, Italy," Environment and Planning B, , vol. 49(5), pages 1431-1447, June.
    5. Stefano Salata, 2021. "The Utilization of Supervised Classification Sampling for Environmental Monitoring in Turin (Italy)," Sustainability, MDPI, vol. 13(5), pages 1-20, February.
    6. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    7. Danial Mohabat Doost & Grazia Brunetta & Ombretta Caldarice, 2023. "In Search of Equitable Resilience: Unravelling the Links between Urban Resilience Planning and Social Equity," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    8. Stefano Salata & Silvia Ronchi & Carolina Giaimo & Andrea Arcidiacono & Giulio Gabriele Pantaloni, 2021. "Performance-Based Planning to Reduce Flooding Vulnerability Insights from the Case of Turin (North-West Italy)," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    9. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    10. Grazia Brunetta & Alessandra Faggian & Ombretta Caldarice, 2021. "Bridging the Gap: The Measure of Urban Resilience," Sustainability, MDPI, vol. 13(3), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    2. Zhang, Ji & Xu, Le & Shabunko, Veronika & Tay, Stephen En Rong & Sun, Huixuan & Lau, Stephen Siu Yu & Reindl, Thomas, 2019. "Impact of urban block typology on building solar potential and energy use efficiency in tropical high-density city," Applied Energy, Elsevier, vol. 240(C), pages 513-533.
    3. Mendis, Thushini & Huang, Zhaojian & Xu, Shen & Zhang, Weirong, 2020. "Economic potential analysis of photovoltaic integrated shading strategies on commercial building facades in urban blocks: A case study of Colombo, Sri Lanka," Energy, Elsevier, vol. 194(C).
    4. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    5. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    6. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    7. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    8. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    9. Weiping Tang & Zhengjia Niu & Zili Wei & Liandong Zhu, 2022. "Sustainable Development of Eco-Cities: A Bibliometric Review," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    10. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    11. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    12. Liao, Xuan & Zhu, Rui & Wong, Man Sing & Heo, Joon & Chan, P.W. & Kwok, Coco Yin Tung, 2023. "Fast and accurate estimation of solar irradiation on building rooftops in Hong Kong: A machine learning-based parameterization approach," Renewable Energy, Elsevier, vol. 216(C).
    13. Stefano Salata & Bertan Arslan, 2022. "Designing with Ecosystem Modelling: The Sponge District Application in İzmir, Turkey," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    14. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    15. Sesil Koutra, 2022. "From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    16. Meskiana Boulahia & Kahina Amal Djiar & Miguel Amado, 2021. "Combined Engineering—Statistical Method for Assessing Solar Photovoltaic Potential on Residential Rooftops: Case of Laghouat in Central Southern Algeria," Energies, MDPI, vol. 14(6), pages 1-16, March.
    17. Hasan, Javeriya & Horvat, Miljana, 2023. "Spatial parameters and methodological approaches in solar potential assessment - State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Carlotta Rodriquez & José Manuel Mendes & Xavier Romão, 2022. "Identifying the Importance of Disaster Resilience Dimensions across Different Countries Using the Delphi Method," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    19. Siyuan Chen & Yukun Zhang & Jie Zheng, 2021. "Assessment on Global Urban Photovoltaic Carrying Capacity and Adjustment of Photovoltaic Spatial Planning," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    20. María-Eugenia Polo & Mar Pozo & Elia Quirós, 2018. "Circular Statistics Applied to the Study of the Solar Radiation Potential of Rooftops in a Medium-Sized City," Energies, MDPI, vol. 11(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4443-:d:364955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.