IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4181045.html
   My bibliography  Save this article

Time Series Prediction of Electricity Demand Using Adaptive Neuro-Fuzzy Inference Systems

Author

Listed:
  • Amevi Acakpovi
  • Alfred Tettey Ternor
  • Nana Yaw Asabere
  • Patrick Adjei
  • Abdul-Shakud Iddrisu

Abstract

This paper is concerned with the reliable prediction of electricity demands using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The need for electricity demand prediction is fundamental and vital for power resource planning and monitoring. A dataset of electricity demands covering the period of 2003 to 2018 was collected from the Electricity Distribution Company of Ghana, covering three urban areas namely Mallam, Achimota, and Ga East, all in Ghana. The dataset was divided into two parts: one part covering a period of 0 to 500 hours was used for training of the ANFIS algorithm while the second part was used for validation. Three scenarios were considered for the simulation exercise that was done with the MATLAB software. Scenario one considered four inputs sampled data, scenario two considered an additional input making it 5, and scenario 3 was similar to scenario 1 with the exception of the number of membership functions that increased from 2 to 3. The performance of the ANFIS algorithm was assessed by comparing its predictions with other three forecast models namely Support Vector Regression (SVR), Least Square Support Vector Machine (LS-SVM), and Auto-Regressive Integrated Moving Average (ARIMA). Findings revealed that the ANFIS algorithm can perform the prediction accurately, the ANFIS algorithm converges faster with an increase in the data used for training, and increasing the membership function resulted in overfitting of data which adversely affected the RMSE values. Comparison of the ANFIS results to other previously used methods of predicting electricity demands including SVR, LS-SVM, and ARIMA revealed that there is merit to the potentials of the ANFIS algorithm for improved predictive accuracy while relying on a quality data for training and reliable setting of tuning parameters.

Suggested Citation

  • Amevi Acakpovi & Alfred Tettey Ternor & Nana Yaw Asabere & Patrick Adjei & Abdul-Shakud Iddrisu, 2020. "Time Series Prediction of Electricity Demand Using Adaptive Neuro-Fuzzy Inference Systems," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, August.
  • Handle: RePEc:hin:jnlmpe:4181045
    DOI: 10.1155/2020/4181045
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4181045.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4181045.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4181045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.
    2. Feras Alasali & Khaled Nusair & Lina Alhmoud & Eyad Zarour, 2021. "Impact of the COVID-19 Pandemic on Electricity Demand and Load Forecasting," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    3. Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
    4. Sahar Ahmadzadeh & Tahmina Ajmal & Ramakrishnan Ramanathan & Yanqing Duan, 2023. "A Comprehensive Review on Food Waste Reduction Based on IoT and Big Data Technologies," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Changjun Huang & Lv Zhou & Fenliang Liu & Yuanzhi Cao & Zhong Liu & Yun Xue, 2023. "Deformation Prediction of Dam Based on Optimized Grey Verhulst Model," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    6. Ahmed Nazmus Sakib & Talayeh Razzaghi & Md Monjur Hossain Bhuiyan, 2023. "Forecasting the Fuel Consumption and Price for a Future Pandemic Outbreak: A Case Study in the USA under COVID-19," Sustainability, MDPI, vol. 15(17), pages 1-26, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4181045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.