IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12436-d1218240.html
   My bibliography  Save this article

A Multi-Field Coupled PEMFC Model with Force-Temperature-Humidity and Experimental Validation for High Electrochemical Performance Design

Author

Listed:
  • Zhiming Zhang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Zhihao Chen

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Kunpeng Li

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Xinfeng Zhang

    (School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China)

  • Caizhi Zhang

    (College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China)

  • Tong Zhang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

PEMFCs (Proton Exchange Membrane Fuel Cells) are commonly used in fuel cell vehicles, which facilitates energy conversation and environmental protection. The fuel cell electrochemical performance is significantly affected by the contact resistance and the GDL (Gas Diffusion Layer) porosity due to ohmic and concentration losses. However, it is difficult to obtain the exact performance prediction of the electrochemical reaction for a fuel cell design, resulting from the complex operating conditions of fuel cells coupled with the assembly force, operating temperature, relative humidity, etc. Considering the compression behavior of porosity and the contact pressure in GDLs, a force-temperature-humidity multi-field coupled model is established based on FEA (Finite Element Analysis) and CFD (Computational Fluid Dynamics) for the fuel cell electrochemical performance. Aside from that, the characteristics between the contact resistance and the contact pressure are measured and fitted through the experiments in this study. Finally, the numerical model is validated by the experiment of the fuel cell stack, and the error rate between the presented model and the experimentation of the full-dimensional stack being a maximum of 3.37%. This work provides important insight into the force-temperature-humidity coupled action as less empirical testing is required to identify the high fuel cell performance and optimize the fuel cell parameters in a full-dimensional fuel cell stack.

Suggested Citation

  • Zhiming Zhang & Zhihao Chen & Kunpeng Li & Xinfeng Zhang & Caizhi Zhang & Tong Zhang, 2023. "A Multi-Field Coupled PEMFC Model with Force-Temperature-Humidity and Experimental Validation for High Electrochemical Performance Design," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12436-:d:1218240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiming Zhang & Jun Zhang & Liang Shi & Tong Zhang, 2022. "A Study of Contact Pressure with Thermo-Mechanical Coupled Action for a Full-Dimensional PEMFC Stack," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    2. Barzegari, M.M. & Ghadimi, M. & Momenifar, M., 2020. "Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate," Applied Energy, Elsevier, vol. 263(C).
    3. Atyabi, Seyed Ali & Afshari, Ebrahim & Wongwises, Somchai & Yan, Wen-Mon & Hadjadj, Abdellah & Shadloo, Mostafa Safdari, 2019. "Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances," Energy, Elsevier, vol. 179(C), pages 490-501.
    4. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Shusheng Xiong & Zhankuan Wu & Wei Li & Daize Li & Teng Zhang & Yu Lan & Xiaoxuan Zhang & Shuyan Ye & Shuhao Peng & Zeyu Han & Jiarui Zhu & Qiujie Song & Zhixiao Jiao & Xiaofeng Wu & Heqing Huang, 2021. "Improvement of Temperature and Humidity Control of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    6. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
    7. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chaogang & Gao, Yuan, 2024. "Using multi-threshold non-local means joint distribution method to analysis the spatial distribution patterns of binder and fibers in gas diffusion layers of fuel cells," Applied Energy, Elsevier, vol. 358(C).
    2. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).
    4. Isaac C. Okereke & Mohammed S. Ismail & Derek B. Ingham & Kevin Hughes & Lin Ma & Mohamed Pourkashanian, 2023. "Single- and Double-Sided Coated Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells: A Numerical Study," Energies, MDPI, vol. 16(11), pages 1-16, May.
    5. Keller, Nico & von Unwerth, Thomas, 2022. "Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC," Applied Energy, Elsevier, vol. 307(C).
    6. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    7. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    10. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    11. Haibo Huo & Jiajie Chen & Ke Wang & Fang Wang & Guangzhe Jin & Fengxiang Chen, 2023. "State Estimation of Membrane Water Content of PEMFC Based on GA-BP Neural Network," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    12. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    13. Saka, Kenan & Orhan, Mehmet Fatih, 2022. "Analysis of stack operating conditions for a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 258(C).
    14. Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
    15. Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
    16. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    17. Yanqin Chen & Yuchao Ke & Yingsong Xia & Chongdu Cho, 2021. "Investigation on Mechanical Properties of a Carbon Paper Gas Diffusion Layer through a 3-D Nonlinear and Orthotropic Constitutive Model," Energies, MDPI, vol. 14(19), pages 1-14, October.
    18. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Li, Qingshan & Wang, Chenfang & Wang, Chunmei & Zhou, Taotao & Zhang, Xianwen & Zhang, Yangjun & Zhuge, Weilin & Sun, Li, 2023. "Comparison of organic coolants for boiling cooling of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    20. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12436-:d:1218240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.