IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009357.html
   My bibliography  Save this article

Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design

Author

Listed:
  • Qiu, Diankai
  • Peng, Linfa
  • Yi, Peiyun
  • Lehnert, Werner
  • Lai, Xinmin

Abstract

Proton exchange membrane (PEM) fuel cells are ideal power sources with great potential for automobiles, backup power systems and stationary applications, owing to high efficiency, zero emissions and high power density. For these devices with large power consumption, many unit cells are assembled in series to construct a stack to provide the required voltage and power. However, the assembly process remains a major obstacle to the large-scale deployment of high-power stack. The performance and durability of stacks are greatly affected by the assembly procedures, and the impact mechanism and assembly technique need to be fully understanding. This paper presents an overview of important issues related to the assembly process of fuel cell stacks, providing a basis for engineers and researchers to improve stack performance. It begins with a description of quality evaluation of the stack assembly, followed by assembly methods to clarify the history of the development of stack design. The main contributions to in-situ behavior of stack during the assembly compression and dynamic compression is presented in detail. Numerical methods and optimization techniques are analyzed to guide assembly process. Finally, novel stack designs involving the assembly process are sorted out. A summary of the key points in this area is also provided as a direction for future work. The aim of this paper is to evaluate which factors affect the cell performance during assembly process and how adverse effects should be mitigated via mechanism analysis, quality evaluation, assembly method selection, process optimization and novel stack structure design.

Suggested Citation

  • Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009357
    DOI: 10.1016/j.rser.2021.111660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Diankai & Janßen, Holger & Peng, Linfa & Irmscher, Philipp & Lai, Xinmin & Lehnert, Werner, 2018. "Electrical resistance and microstructure of typical gas diffusion layers for proton exchange membrane fuel cell under compression," Applied Energy, Elsevier, vol. 231(C), pages 127-137.
    2. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    3. Cho, Junhyun & Park, Jaeman & Oh, Hwanyeong & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2013. "Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses," Applied Energy, Elsevier, vol. 111(C), pages 300-309.
    4. Kang, Dong Gyun & Lee, Dong Keun & Choi, Jong Min & Shin, Dong Kyu & Kim, Min Soo, 2020. "Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 156(C), pages 931-941.
    5. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Barzegari, M.M. & Ghadimi, M. & Momenifar, M., 2020. "Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate," Applied Energy, Elsevier, vol. 263(C).
    7. Cai, Yonghua & Fang, Zhou & Chen, Ben & Yang, Tianqi & Tu, Zhengkai, 2018. "Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design," Energy, Elsevier, vol. 161(C), pages 28-37.
    8. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    9. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    10. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    11. Chun, Jeong Hwan & Jo, Dong Hyun & Kim, Sang Gon & Park, Sun Hee & Lee, Chang Hoon & Kim, Sung Hyun, 2012. "Improvement of the mechanical durability of micro porous layer in a proton exchange membrane fuel cell by elimination of surface cracks," Renewable Energy, Elsevier, vol. 48(C), pages 35-41.
    12. Qiu, Diankai & Peng, Linfa & Liang, Peng & Yi, Peiyun & Lai, Xinmin, 2018. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells," Energy, Elsevier, vol. 165(PB), pages 210-222.
    13. Shin, Dong Kyu & Yoo, Jin Hyuk & Kang, Dong Gyun & Kim, Min Soo, 2018. "Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance," Renewable Energy, Elsevier, vol. 115(C), pages 663-675.
    14. Taymaz, Imdat & Benli, Merthan, 2010. "Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(5), pages 2134-2140.
    15. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    16. Sadiq Al-Baghdadi, Maher A.R., 2008. "Three-dimensional computational fluid dynamics model of a tubular-shaped PEM fuel cell," Renewable Energy, Elsevier, vol. 33(6), pages 1334-1345.
    17. Awin, Yussef & Dukhan, Nihad, 2019. "Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    19. Bolouri, Amir & Kang, Chung Gil, 2014. "Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 71(C), pages 616-628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiming Zhang & Sai Wu & Kunpeng Li & Jiaming Zhou & Caizhi Zhang & Guofeng Wang & Tong Zhang, 2022. "An Effective Force-Temperature-Humidity Coupled Modeling for PEMFC Performance Parameter Matching by Using CFD and FEA Co-Simulation," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    2. Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    3. Zhiming Zhang & Hui Ren & Song Hu & Xinfeng Zhang & Tong Zhang & Jiaming Zhou & Shangfeng Jiang & Tao Yu & Bo Deng, 2022. "Arrangement of Belleville Springs on Endplates Combined with Optimal Cross-Sectional Shape in PEMFC Stack Using Equivalent Beam Modeling and FEA," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    4. Lu, Guolong & Liu, Mingxin & Su, Xunkang & Zheng, Tongxi & Luan, Yang & Fan, Wenxuan & Cui, Hao & Liu, Zhenning, 2024. "Study on counter-flow mass transfer characteristics and performance optimization of commercial large-scale proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 359(C).
    5. Yuemeng Zhang & Jia Wang & Zhanhui Yao, 2023. "Recent Development of Fuel Cell Core Components and Key Materials: A Review," Energies, MDPI, vol. 16(5), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    3. Chen, Xi & Yang, Chen & Sun, Yun & Liu, Qinxiao & Wan, Zhongmin & Kong, Xiangzhong & Tu, Zhengkai & Wang, Xiaodong, 2022. "Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 309(C).
    4. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    5. Lian, Yunsong & Zhu, Zhengchao & You, Changtang & Lin, Liangliang & Lin, Fengtian & Lin, Le & Huang, Yating & Zhou, Wei, 2023. "Structural optimization of fiber porous self-humidifying flow field plates applied to proton exchange membrane fuel cells," Energy, Elsevier, vol. 271(C).
    6. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
    8. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    11. Ye, Lingfeng & Qiu, Diankai & Peng, Linfa & Lai, Xinmin, 2022. "Microstructures and electrical conductivity properties of compressed gas diffusion layers using X-ray tomography," Applied Energy, Elsevier, vol. 326(C).
    12. Kermani, M.J. & Moein-Jahromi, M. & Hasheminasab, M.R. & Ebrahimi, F. & Wei, L. & Guo, J. & Jiang, F.M., 2022. "Application of a foam-based functionally graded porous material flow-distributor to PEM fuel cells," Energy, Elsevier, vol. 254(PB).
    13. Zhang, Heng & Xiao, Liusheng & Chuang, Po-Ya Abel & Djilali, Ned & Sui, Pang-Chieh, 2019. "Coupled stress–strain and transport in proton exchange membrane fuel cell with metallic bipolar plates," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    15. Keller, Nico & von Unwerth, Thomas, 2022. "Advanced parametric model for analysis of the influence of channel cross section dimensions and clamping pressure on current density distribution in PEMFC," Applied Energy, Elsevier, vol. 307(C).
    16. Jianguo Zhao & Zihan Lin & Mingjue Zhou, 2022. "Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    18. Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
    19. Yanqin Chen & Yuchao Ke & Yingsong Xia & Chongdu Cho, 2021. "Investigation on Mechanical Properties of a Carbon Paper Gas Diffusion Layer through a 3-D Nonlinear and Orthotropic Constitutive Model," Energies, MDPI, vol. 14(19), pages 1-14, October.
    20. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.