IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6243-d567054.html
   My bibliography  Save this article

A Comprehensive Framework for Evaluating Sustainable Green Building Indicators under an Uncertain Environment

Author

Listed:
  • Mohamed Abdel-Basset

    (Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt)

  • Abduallah Gamal

    (Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt)

  • Ripon K. Chakrabortty

    (Capability Systems Centre, School of Engineering and IT, University of New South Wales, Canberra 2052, Australia)

  • Michael Ryan

    (Capability Systems Centre, School of Engineering and IT, University of New South Wales, Canberra 2052, Australia)

  • Nissreen El-Saber

    (Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt)

Abstract

The development of sustainable green buildings (GBs) is a major contribution to the preservation of the environment. Sustainable thinking in GB construction is not a supplementary element, but rather necessary to achieve the building’s functional, economic, and environmental efficiency in order to preserve resources and meet current and future needs. In particular, developing countries can apply the idea of sustainability in GBs by following international policies and standards, combined with their local characteristics, to construct GBs that are aligned with the environment and are in line with the available local capabilities and resources. The paper focuses on the dimensions and indicators of sustainable design for GBs in developing countries to achieve the positive dimensions of building sustainability, such as preserving energy and natural resources, water management, adaptation to the surrounding environment, and respecting the needs of its users. We assess and prioritize the dimensions and indicators of GBs through the use of a multi-criteria decision-making (MCDM) method under a neutrosophic environment. Initially, the Delphi method is employed to capture preference and to determine the dimensions and their indicators in addition to provide preference among sub-indicators. The relative importance of the selected dimensions and indicators is assessed through the analytical hierarchy method (AHP) method. The results indicate that the water efficiency dimension is the most significant, with a weight of 0.330, while the energy efficiency dimension is the least significant for GBs in developing countries, with a weight of 0.100. The paper concludes with a set of administrative implications for applying sustainable development strategies in GBs.

Suggested Citation

  • Mohamed Abdel-Basset & Abduallah Gamal & Ripon K. Chakrabortty & Michael Ryan & Nissreen El-Saber, 2021. "A Comprehensive Framework for Evaluating Sustainable Green Building Indicators under an Uncertain Environment," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6243-:d:567054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    2. Wu, Peng & Song, Yongze & Shou, Wenchi & Chi, Hunglin & Chong, Heap-Yih & Sutrisna, Monty, 2017. "A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 370-379.
    3. Qianwen Li & Ruyin Long & Hong Chen & Feiyu Chen & Xiu Cheng, 2019. "Chinese urban resident willingness to pay for green housing based on double-entry mental accounting theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 129-153, January.
    4. Yu, Wei & Li, Baizhan & Yang, Xincheng & Wang, Qingqin, 2015. "A development of a rating method and weighting system for green store buildings in China," Renewable Energy, Elsevier, vol. 73(C), pages 123-129.
    5. Kahraman, Cengiz & Cebeci, Ufuk & Ruan, Da, 2004. "Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey," International Journal of Production Economics, Elsevier, vol. 87(2), pages 171-184, January.
    6. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    7. Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
    8. Zhang, Xiaoling & Shen, Liyin & Zhang, Lei, 2013. "Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 160-169.
    9. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    10. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim Yilmaz, 2023. "A Hybrid DEA–Fuzzy COPRAS Approach to the Evaluation of Renewable Energy: A Case of Wind Farms in Turkey," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    2. Yijia Miao & Doris Sau Fung Yu & Weiguang Tan & Sunnie Sing Yeung Lau & Stephen Siu Yu Lau & Yiqi Tao, 2024. "Crafting Sustainable Healthcare Environments Using Green Building Ratings for Aging Societies," Sustainability, MDPI, vol. 16(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    2. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    3. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    4. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    5. Laura Tupenaite & Irene Lill & Ineta Geipele & Jurga Naimaviciene, 2017. "Ranking of Sustainability Indicators for Assessment of the New Housing Development Projects: Case of the Baltic States," Resources, MDPI, vol. 6(4), pages 1-21, October.
    6. Zhang, XiaoHong & Cao, Jun & Li, JinRong & Deng, ShiHuai & Zhang, YanZong & Wu, Jun, 2015. "Influence of sewage treatment on China׳s energy consumption and economy and its performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1009-1018.
    7. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    8. Stephen R. J. Tsuji, 2021. "Indigenous Environmental Justice and Sustainability: What Is Environmental Assimilation?," Sustainability, MDPI, vol. 13(15), pages 1-30, July.
    9. Tuo Shi & Yuanman Hu & Miao Liu & Chunlin Li & Chuyi Zhang & Chong Liu, 2020. "How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China," IJERPH, MDPI, vol. 17(15), pages 1-14, July.
    10. Gaurav Khatwani & Gopal Das, 2016. "Evaluating combination of individual pre-purchase internet information channels using hybrid fuzzy MCDM technique: demographics as moderators," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 12(1), pages 28-49.
    11. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    12. Peng Wu & Yongze Song & Jun Wang & Xiangyu Wang & Xianbo Zhao & Qinghua He, 2017. "Regional Variations of Credits Obtained by LEED 2009 Certified Green Buildings—A Country Level Analysis," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    13. Liu, Xin & Zuo, Yuning & Yin, Zekai & Liang, Chuanzhi & Feng, Guohui & Yang, Xiaodan, 2023. "Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China," Energy, Elsevier, vol. 262(PA).
    14. Ngoc Thach Pham & Anh Duc Do & Quang Vinh Nguyen & Van Loi Ta & Thi Thanh Binh Dao & Dieu Linh Ha & Xuan Truong Hoang, 2021. "Research on Knowledge Management Models at Universities Using Fuzzy Analytic Hierarchy Process (FAHP)," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    15. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    16. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    17. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    18. repec:eco:journ2:2017-04-06 is not listed on IDEAS
    19. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    20. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    21. Michiel Fremouw & Annamaria Bagaini & Paolo De Pascali, 2020. "Energy Potential Mapping: Open Data in Support of Urban Transition Planning," Energies, MDPI, vol. 13(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6243-:d:567054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.