The Application of Graph-Structured Cox Model in Financial Risk Early Warning of Companies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Szu-Hsien Lin & Tzu-Pu Chang & Huei-Hwa Lai & Zi-Ying Lu, 2022. "Do Social Networks of Listed Companies Help Companies Recover from Financial Crises?," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
- J-K Im & D W Apley & C Qi & X Shan, 2012. "A time-dependent proportional hazards survival model for credit risk analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 306-321, March.
- Zhiyong Li & Jonathan Crook & Galina Andreeva, 2014. "Chinese companies distress prediction: an application of data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 466-479, March.
- Sen Zeng & Yaqin Li & Wanjun Yang & Yanru Li, 2020. "A Financial Distress Prediction Model Based on Sparse Algorithm and Support Vector Machine," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, November.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- A. Adam Ding & Shaonan Tian & Yan Yu & Hui Guo, 2012. "A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 990-1003, September.
- Qingyuan Yang & Shaorong Xu, 2022. "The Relationship between the Political Connections and Green Innovation Development of Chinese Enterprises—Empirical Analysis Based on Panel Data of Chinese A-Share Listed Companies," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
- Dong Zhao & Chunyu Huang & Yan Wei & Fanhua Yu & Mingjing Wang & Huiling Chen, 2017. "An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 325-341, February.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020.
"Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds,"
LEO Working Papers / DR LEO
2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2021. "Machine Learning or Econometrics for Credit Scoring: Let's Get the Best of Both Worlds," Working Papers hal-02507499, HAL.
- Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
- repec:ctc:sdimse:dime21_01 is not listed on IDEAS
- Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
- Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
- Misankova Maria & Zvarikova Katarina & Kliestikova Jana, 2017. "Bankruptcy Practice in Countries of Visegrad Four," Economics and Culture, Sciendo, vol. 14(1), pages 108-118, June.
- Bai, Qing & Tian, Shaonan, 2020. "Innovate or die: Corporate innovation and bankruptcy forecasts," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 88-108.
- Ayoola Tajudeen John & Obokoh Lawrence Ogechukwu, 2018. "Corporate Governance and Financial Distress in the Banking Industry: Nigerian Experience," Journal of Economics and Behavioral Studies, AMH International, vol. 10(1), pages 182-193.
- Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
- Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
- Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
- Gianfranco Lombardo & Mattia Pellegrino & George Adosoglou & Stefano Cagnoni & Panos M. Pardalos & Agostino Poggi, 2022. "Machine Learning for Bankruptcy Prediction in the American Stock Market: Dataset and Benchmarks," Future Internet, MDPI, vol. 14(8), pages 1-23, August.
- Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
- Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2022. "Does board committee independence affect financial distress likelihood? A comparison of China with the UK," Asia Pacific Journal of Management, Springer, vol. 39(2), pages 723-761, June.
- Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
- Marko Špiler & Tijana Matejić & Snežana Knežević & Marko Milašinović & Aleksandra Mitrović & Vesna Bogojević Arsić & Tijana Obradović & Dragoljub Simonović & Vukašin Despotović & Stefan Milojević & Mi, 2022. "Assessment of the Bankruptcy Risk in the Hotel Industry as a Condition of the COVID-19 Crisis Using Time-Delay Neural Networks," Sustainability, MDPI, vol. 15(1), pages 1-54, December.
More about this item
Keywords
variable selection; Cox proportional hazards model; graph structure; financial risk early warning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10802-:d:1190533. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.