IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v49y2017i2d10.1007_s10614-016-9562-7.html
   My bibliography  Save this article

An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach

Author

Listed:
  • Dong Zhao

    (Changchun Normal University)

  • Chunyu Huang

    (Changchun University of Science Technology)

  • Yan Wei

    (Wenzhou Vocational College of Science and Technology)

  • Fanhua Yu

    (Changchun Normal University)

  • Mingjing Wang

    (Wenzhou University)

  • Huiling Chen

    (Wenzhou University)

Abstract

Bankruptcy prediction is becoming more and more important issue in financial decision-making. It is essential to make the companies prevent from bankruptcy through building effective corporate bankruptcy prediction model in time. This study proposes an effective bankruptcy prediction model based on the kernel extreme learning machine (KELM). A two-step grid search strategy which integrates the coarse search with the fine search is adopted to train KELM. The resultant bankruptcy prediction model is compared with other five competitive methods including support vector machines, extreme learning machine, random forest, particle swarm optimization enhanced fuzzy k-nearest neighbor and Logit model on the real life dataset via 10-fold cross validation analysis. The obtained results clearly confirm the superiority of the developed model in terms of classification accuracy, Type I error, Type II error and area under the receiver operating characteristic curve (AUC) criterion. Promisingly, the proposed KELM can serve as a new candidate of powerful early warning systems for bankruptcy prediction with excellent performance.

Suggested Citation

  • Dong Zhao & Chunyu Huang & Yan Wei & Fanhua Yu & Mingjing Wang & Huiling Chen, 2017. "An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 325-341, February.
  • Handle: RePEc:kap:compec:v:49:y:2017:i:2:d:10.1007_s10614-016-9562-7
    DOI: 10.1007/s10614-016-9562-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-016-9562-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-016-9562-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    2. Sumit Sarkar & Ram S. Sriram, 2001. "Bayesian Models for Early Warning of Bank Failures," Management Science, INFORMS, vol. 47(11), pages 1457-1475, November.
    3. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    4. Tong Liu & Liang Hu & Chao Ma & Zhi-Yan Wang & Hui-Ling Chen, 2015. "A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 919-931, April.
    5. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    6. West, Robert Craig, 1985. "A factor-analytic approach to bank condition," Journal of Banking & Finance, Elsevier, vol. 9(2), pages 253-266, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    2. Misankova Maria & Zvarikova Katarina & Kliestikova Jana, 2017. "Bankruptcy Practice in Countries of Visegrad Four," Economics and Culture, Sciendo, vol. 14(1), pages 108-118, June.
    3. Chen, Jian & Katchova, Ani L. & Zhou, Chenxi, 2021. "Agricultural loan delinquency prediction using machine learning methods," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5), May.
    4. Vicente García & Ana I. Marqués & J. Salvador Sánchez & Humberto J. Ochoa-Domínguez, 2019. "Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1019-1031, March.
    5. Abbas Haider & Hui Wang & Bryan Scotney & Glenn Hawe, 2022. "Predictive Market Making via Machine Learning," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
    6. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    7. Xiangxing Tao & Mingxin Wang & Yanting Ji, 2023. "The Application of Graph-Structured Cox Model in Financial Risk Early Warning of Companies," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    8. Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
    9. Johan Eklund & Nadine Levratto & Giovanni B. Ramello, 2020. "Entrepreneurship and failure: two sides of the same coin?," Small Business Economics, Springer, vol. 54(2), pages 373-382, February.
    10. repec:ctc:sdimse:dime21_01 is not listed on IDEAS
    11. Veganzones, David & Séverin, Eric & Chlibi, Souhir, 2023. "Influence of earnings management on forecasting corporate failure," International Journal of Forecasting, Elsevier, vol. 39(1), pages 123-143.
    12. Abang Zainoren Abang Abdurahman & Wan Fairos Wan Yaacob & Syerina Azlin Md Nasir & Serah Jaya & Suhaili Mokhtar, 2022. "Using Machine Learning to Predict Visitors to Totally Protected Areas in Sarawak, Malaysia," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    13. Marko Špiler & Tijana Matejić & Snežana Knežević & Marko Milašinović & Aleksandra Mitrović & Vesna Bogojević Arsić & Tijana Obradović & Dragoljub Simonović & Vukašin Despotović & Stefan Milojević & Mi, 2022. "Assessment of the Bankruptcy Risk in the Hotel Industry as a Condition of the COVID-19 Crisis Using Time-Delay Neural Networks," Sustainability, MDPI, vol. 15(1), pages 1-54, December.
    14. Philippe Jardin & David Veganzones & Eric Séverin, 2019. "Forecasting Corporate Bankruptcy Using Accrual-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 7-43, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    2. J. Uthayakumar & Noura Metawa & K. Shankar & S. K. Lakshmanaprabu, 2020. "RETRACTED ARTICLE: Intelligent hybrid model for financial crisis prediction using machine learning techniques," Information Systems and e-Business Management, Springer, vol. 18(4), pages 617-645, December.
    3. Samir Trabelsi & Roc He & Lawrence He & Martin Kusy, 2015. "A comparison of Bayesian, Hazard, and Mixed Logit model of bankruptcy prediction," Computational Management Science, Springer, vol. 12(1), pages 81-97, January.
    4. Sajad Abdipour & Ahmad Nasseri & Mojtaba Akbarpour & Hossein Parsian & Shahrzad Zamani, 2013. "Integrating Neural Network and Colonial Competitive Algorithm: A New Approach for Predicting Bankruptcy in Tehran Security Exchange," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(11), pages 1528-1539, November.
    5. Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
    6. Noora Alzayed & Rasol Eskandari & Hassan Yazdifar, 2023. "Bank failure prediction: corporate governance and financial indicators," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 601-631, August.
    7. Chiuling Lu & Ann Yang & Jui-Feng Huang, 2015. "Bankruptcy predictions for U.S. air carrier operations: a study of financial data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(3), pages 574-589, July.
    8. Ijaz Hussain, 2013. "Estimating Firms’ Vulnerability to Short-Term Financing Shocks: The Case of Foreign Exchange Companies in Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 18(2), pages 147-163, July-Dec.
    9. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    10. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    11. Vicente García & Ana I. Marqués & J. Salvador Sánchez & Humberto J. Ochoa-Domínguez, 2019. "Dissimilarity-Based Linear Models for Corporate Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1019-1031, March.
    12. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
    13. Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.
    14. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    15. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    16. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    17. J. F. Juliá-Igual & R. Cervelló-Royo & I. Berné-Lafuente, 2017. "Market value analysis of a Chinese e-commerce holding group: a multicriteria approach," Service Business, Springer;Pan-Pacific Business Association, vol. 11(3), pages 475-490, September.
    18. Aznar Bellver, Jerónimo & Cervelló Royo, Roberto & García García, Fernando, 2011. "Una alternativa multicriterio a la valoración de empresas: aplicación a las Cajas de Ahorro/A Multicriteria Alternative to Companies’ Valuation: Application to a Spanish Savings Bank," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 29, pages 393(16á.)-3, Abril.
    19. Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    20. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:49:y:2017:i:2:d:10.1007_s10614-016-9562-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.