IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9990-d1177798.html
   My bibliography  Save this article

Traffic Safety Sensitivity Analysis of Parameters Used for Connected and Autonomous Vehicle Calibration

Author

Listed:
  • Tasneem Miqdady

    (TRYSE Research Group, ETSI Caminos, Canales y Puertos, University of Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain)

  • Rocío de Oña

    (TRYSE Research Group, ETSI Caminos, Canales y Puertos, University of Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain)

  • Juan de Oña

    (TRYSE Research Group, ETSI Caminos, Canales y Puertos, University of Granada, Campus de Fuentenueva, s/n, 18071 Granada, Spain)

Abstract

Recently, the number of traffic safety studies involving connected and autonomous vehicles (CAVs) has been increasing. Due to the lack of information regarding the real behaviour of CAVs in mixed traffic flow, traffic simulation platforms are used to provide a reasonable approach for testing various scenarios and fleets. It is necessary to analyse how traffic safety is affected when key parameter assumptions are changed. The current study conducts a sensitivity analysis to identify the parameters used in CAV calibration that have the highest influence on traffic safety. Using a microsimulation-based surrogate safety assessment model approach (SSAM), traffic conflicts were identified, and a ceteris paribus analysis was conducted to measure the effect of gradually changing each parameter on the number of conflicts. Afterwards, a two-at-a-time sensitivity analysis was performed to explore the influence of simultaneously varying two parameters. The results revealed that reaction time, clearance, maximum acceleration, normal deceleration, and the sensitivity factor are key parameters. Studying these parameters two at a time revealed that low maximum acceleration, when combined with other parameters, consistently resulted in the highest number of conflicts, while combinations with short reaction time always yielded the best traffic safety results. This investigation broadens the understanding of CAV behaviour for future implementation for both manufacturers and researchers.

Suggested Citation

  • Tasneem Miqdady & Rocío de Oña & Juan de Oña, 2023. "Traffic Safety Sensitivity Analysis of Parameters Used for Connected and Autonomous Vehicle Calibration," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9990-:d:1177798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    2. Pernestål Brenden , Anna & Kristoffersson , Ida, 2018. "Effects of driverless vehicles: A review of simulations," Working papers in Transport Economics 2018:11, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    3. Nanyondo, Josephine & Kasumba, Henry, 2024. "Analysis of heterogeneous vehicular traffic: Using proportional densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Zeynel Baran Yıldırım & Mustafa Özuysal, 2024. "Autonomous Vehicles and Urban Traffic Management for Sustainability: Impacts of Transition of Control and Dedicated Lanes," Sustainability, MDPI, vol. 16(19), pages 1-19, September.
    5. Manivasakan, Hesavar & Kalra, Riddhi & O'Hern, Steve & Fang, Yihai & Xi, Yinfei & Zheng, Nan, 2021. "Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads – Current practice and a case study of Melbourne, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 36-53.
    6. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    8. Liu, Keyi & Feng, Tianjun, 2023. "Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    9. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    10. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    11. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Huang, Wei & Hu, Yang, 2022. "A modified cell transmission model considering queuing characteristics for channelized zone at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    13. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    14. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    15. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    16. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    17. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    18. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2023. "Chaotic jam and phase transitions in heterogeneous lattice model integrating the delay characteristics difference with passing effect under autonomous and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    19. Guangyang Hou, 2023. "Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    20. Liu, Qingchao & Cai, Yingfeng & Jiang, Haobin & Lu, Jian & Chen, Long, 2018. "Traffic state prediction using ISOMAP manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 532-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9990-:d:1177798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.