IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p9859-d1175793.html
   My bibliography  Save this article

Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations

Author

Listed:
  • Auwal Alhassan Musa

    (Civil Engineering Department, Mewar University, Chittorgarh 312901, India)

  • Salim Idris Malami

    (School of Energy, Geo-Science, Infrastructure and Society, Institute for Sustainable Built Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Fayez Alanazi

    (Civil Engineering Department, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Wassef Ounaies

    (Civil Engineering Department, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Mohammed Alshammari

    (Civil Engineering Department, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

  • Sadi Ibrahim Haruna

    (School of Civil Engineering, Tianjin University, Tianjin 300350, China)

Abstract

The emergence of smart cities has addressed many critical challenges associated with conventional urbanization worldwide. However, sustainable traffic management in smart cities has received less attention from researchers due to its complex and heterogeneous nature, which directly affects smart cities’ transportation systems. The study aimed at addressing traffic-related issues in smart cities by focusing on establishing a sustainable framework based on the Internet of Things (IoT) and Intelligent Transportation System (ITS) applications. To sustain the management of traffic in smart cities, which is composed of a hybridized stream of human-driven vehicles (HDV) and connected automated vehicles (CAV), a dual approach was employed by considering traffic as either modeling- and analysis-based, or/and the decision-making issues of previous research works. Moreover, the two techniques utilized real-time traffic data, and collected vehicle and road users’ information using AI sensors and ITS-based devices. These data can be processed and transmitted using machine learning algorithms and cloud computing for traffic management, traffic decision-making policies, and documentation for future use. The proposed framework suggests that deploying such systems in smart cities’ transportation could play a significant role in predicting traffic outcomes, traffic forecasting, traffic decongestion, minimizing road users’ lost hours, suggesting alternative routes, and simplifying urban transportation activities for urban dwellers. Also, the proposed integrated framework adopted can address issues related to pollution in smart cities by promoting public transportation and advocating low-carbon emission zones. By implementing these solutions, smart cities can achieve sustainable traffic management and reduce their carbon footprint, making them livable and environmentally friendly.

Suggested Citation

  • Auwal Alhassan Musa & Salim Idris Malami & Fayez Alanazi & Wassef Ounaies & Mohammed Alshammari & Sadi Ibrahim Haruna, 2023. "Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9859-:d:1175793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/9859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/9859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vishal Sharma & Ilsun You & Giovanni Pau & Mario Collotta & Jae Deok Lim & Jeong Nyeo Kim, 2018. "LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems," Energies, MDPI, vol. 11(3), pages 1-26, March.
    2. Rusul Abduljabbar & Hussein Dia & Sohani Liyanage & Saeed Asadi Bagloee, 2019. "Applications of Artificial Intelligence in Transport: An Overview," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
    3. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    4. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    6. Maxim A. Dulebenets, 2018. "A Diploid Evolutionary Algorithm for Sustainable Truck Scheduling at a Cross-Docking Facility," Sustainability, MDPI, vol. 10(5), pages 1-23, April.
    7. Giovanni Pau & Tiziana Campisi & Antonino Canale & Alessandro Severino & Mario Collotta & Giovanni Tesoriere, 2018. "Smart Pedestrian Crossing Management at Traffic Light Junctions through a Fuzzy-Based Approach," Future Internet, MDPI, vol. 10(2), pages 1-19, February.
    8. Changxi Ma & Ruichun He & Wei Zhang, 2018. "Path optimization of taxi carpooling," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    9. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    10. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    11. Mario Collotta & Yunchuan Sun & Luca Di Persio & Emad Samuel Malki Ebeid & Riccardo Muradore, 2018. "Smart Green Applications: From Renewable Energy Management to Intelligent Transportation Systems," Energies, MDPI, vol. 11(5), pages 1-3, May.
    12. Iqbal Yulizar Mukti & Yudha Prambudia, 2018. "Challenges in Governing the Digital Transportation Ecosystem in Jakarta: A Research Direction in Smart City Frameworks," Challenges, MDPI, vol. 9(1), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Husnain Mushtaq & Xiaoheng Deng & Mubashir Ali & Babur Hayat & Hafiz Husnain Raza Sherazi, 2023. "DFA-SAT: Dynamic Feature Abstraction with Self-Attention-Based 3D Object Detection for Autonomous Driving," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    2. Junhee Kang & Sehyun Tak & Sungjin Park, 2023. "Analyzing the Impact of C-ITS Services on Driving Behavior: A Case Study of the Daejeon–Sejong C-ITS Pilot Project in South Korea," Sustainability, MDPI, vol. 15(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    2. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    3. Maiti, Nandan & Laval, Jorge A. & Chilukuri, Bhargava Rama, 2024. "Universality of area occupancy-based fundamental diagrams in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    4. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    5. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    6. Treiber, Martin & Kanagaraj, Venkatesan, 2015. "Comparing numerical integration schemes for time-continuous car-following models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 183-195.
    7. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    8. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    9. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    10. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    11. Faryal Ali & Zawar Hussain Khan & Khurram Shehzad Khattak & Thomas Aaron Gulliver & Akhtar Nawaz Khan, 2022. "A Microscopic Heterogeneous Traffic Flow Model Considering Distance Headway," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    12. Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    13. Mario Collotta & Yunchuan Sun & Luca Di Persio & Emad Samuel Malki Ebeid & Riccardo Muradore, 2018. "Smart Green Applications: From Renewable Energy Management to Intelligent Transportation Systems," Energies, MDPI, vol. 11(5), pages 1-3, May.
    14. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    15. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    16. Kalathil, Dileep & Kurzhanskiy, Alex A. & Varaiya, Pravin, 2017. "Sustainable Operation of Arterial Networks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5js550jt, Institute of Transportation Studies, UC Berkeley.
    17. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    18. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    19. Jin, Wen-Long, 2012. "The traffic statics problem in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1360-1373.
    20. Luetian Sun & Rui Song, 2022. "Improving Efficiency in Congested Traffic Networks: Pareto-Improving Reservations through Agent-Based Timetabling," Sustainability, MDPI, vol. 14(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:9859-:d:1175793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.